O(VE) time algorithms for the Grundy (First-Fit) chromatic number of block graphs and graphs with large girth

IF 0.7 3区 数学 Q2 MATHEMATICS
Manouchehr Zaker
{"title":"O(VE) time algorithms for the Grundy (First-Fit) chromatic number of block graphs and graphs with large girth","authors":"Manouchehr Zaker","doi":"10.1016/j.disc.2025.114502","DOIUrl":null,"url":null,"abstract":"<div><div>The Grundy (or First-Fit) chromatic number of a graph <span><math><mi>G</mi><mo>=</mo><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>)</mo></math></span>, denoted by <span><math><mi>Γ</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> (or <span><math><msub><mrow><mi>χ</mi></mrow><mrow><msub><mrow></mrow><mrow><mi>FF</mi></mrow></msub></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span>), is the maximum number of colors used by a First-Fit (greedy) coloring of <em>G</em>. The determining <span><math><mi>Γ</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> is <span>NP</span>-complete for various classes of graphs. Also there exists a constant <span><math><mi>c</mi><mo>&gt;</mo><mn>0</mn></math></span> such that the Grundy number is hard to approximate within the ratio <em>c</em>. We first obtain an <span><math><mi>O</mi><mo>(</mo><mi>V</mi><mi>E</mi><mo>)</mo></math></span> algorithm to determine the Grundy number of block graphs i.e. graphs in which every biconnected component is a complete graph. We prove that the Grundy number of a general graph <em>G</em> with cut-vertices is upper bounded by the Grundy number of a block graph corresponding to <em>G</em>. This provides a reasonable upper bound for the Grundy number of graphs with cut-vertices. Next, define <span><math><msub><mrow><mi>Δ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo><msub><mrow><mi>max</mi></mrow><mrow><mi>u</mi><mo>∈</mo><mi>V</mi></mrow></msub><mo>⁡</mo><mspace></mspace><msub><mrow><mi>max</mi></mrow><mrow><mi>v</mi><mo>∈</mo><mi>N</mi><mo>(</mo><mi>u</mi><mo>)</mo><mo>:</mo><mi>d</mi><mo>(</mo><mi>v</mi><mo>)</mo><mo>≤</mo><mi>d</mi><mo>(</mo><mi>u</mi><mo>)</mo></mrow></msub><mo>⁡</mo><mi>d</mi><mo>(</mo><mi>v</mi><mo>)</mo></math></span>. We obtain an <span><math><mi>O</mi><mo>(</mo><mi>V</mi><mi>E</mi><mo>)</mo></math></span> algorithm to determine <span><math><mi>Γ</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> for graphs <em>G</em> whose girth <em>g</em> is at least <span><math><mn>2</mn><msub><mrow><mi>Δ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>+</mo><mn>1</mn></math></span>. This algorithm provides a polynomial time approximation algorithm within ratio <span><math><mi>min</mi><mo>⁡</mo><mo>{</mo><mn>1</mn><mo>,</mo><mo>(</mo><mi>g</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>/</mo><mo>(</mo><mn>2</mn><msub><mrow><mi>Δ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>+</mo><mn>2</mn><mo>)</mo><mo>}</mo></math></span> for <span><math><mi>Γ</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> of general graphs <em>G</em> with girth <em>g</em>.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 9","pages":"Article 114502"},"PeriodicalIF":0.7000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X25001104","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The Grundy (or First-Fit) chromatic number of a graph G=(V,E), denoted by Γ(G) (or χFF(G)), is the maximum number of colors used by a First-Fit (greedy) coloring of G. The determining Γ(G) is NP-complete for various classes of graphs. Also there exists a constant c>0 such that the Grundy number is hard to approximate within the ratio c. We first obtain an O(VE) algorithm to determine the Grundy number of block graphs i.e. graphs in which every biconnected component is a complete graph. We prove that the Grundy number of a general graph G with cut-vertices is upper bounded by the Grundy number of a block graph corresponding to G. This provides a reasonable upper bound for the Grundy number of graphs with cut-vertices. Next, define Δ2(G)=maxuVmaxvN(u):d(v)d(u)d(v). We obtain an O(VE) algorithm to determine Γ(G) for graphs G whose girth g is at least 2Δ2(G)+1. This algorithm provides a polynomial time approximation algorithm within ratio min{1,(g+1)/(2Δ2(G)+2)} for Γ(G) of general graphs G with girth g.
图 G=(V,E) 的 Grundy(或 First-Fit)色度数用 Γ(G)(或 χFF(G))表示,是 G 的 First-Fit(贪婪)着色所使用的最大颜色数。我们首先获得了一种 O(VE) 算法来确定块图的格兰迪数,即每个双连接组件都是完整图的图。我们证明,具有切顶的一般图 G 的格兰迪数的上限是与 G 相对应的块图的格兰迪数,这为具有切顶的图的格兰迪数提供了合理的上限。接下来,定义 Δ2(G)=maxu∈Vmaxv∈N(u):d(v)≤d(u)d(v)。对于周长 g 至少为 2Δ2(G)+1 的图 G,我们得到了一种确定 Γ(G) 的 O(VE) 算法。该算法为周长为 g 的一般图 G 的 Γ(G) 提供了一个比率为 min{1,(g+1)/(2Δ2(G)+2)} 的多项式时间近似算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Mathematics
Discrete Mathematics 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
424
审稿时长
6 months
期刊介绍: Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory. Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信