L3Net: Localized and Layered Reparameterization for incremental learning

IF 6 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Xuandi Luo , Huaidong Zhang , Yi Xie , Hongrui Zhang , Xuemiao Xu , Shengfeng He
{"title":"L3Net: Localized and Layered Reparameterization for incremental learning","authors":"Xuandi Luo ,&nbsp;Huaidong Zhang ,&nbsp;Yi Xie ,&nbsp;Hongrui Zhang ,&nbsp;Xuemiao Xu ,&nbsp;Shengfeng He","doi":"10.1016/j.neunet.2025.107420","DOIUrl":null,"url":null,"abstract":"<div><div>Model-based class incremental learning (CIL) methods aim to address the challenge of catastrophic forgetting by retaining certain parameters and expanding the model architecture. However, retaining too many parameters can lead to an overly complex model, increasing inference overhead. Additionally, compressing these parameters to reduce the model size can result in performance degradation. To tackle these challenges, we propose a novel three-stage CIL framework called <strong>L</strong>ocalized and <strong>L</strong>ayered Reparameterization for Incremental <strong>L</strong>earning (<strong>L<sup>3</sup>Net</strong>). The rationale behind our approach is to balance model complexity and performance by selectively expanding and optimizing critical components. Specifically, the framework introduces a Localized Dual-path Expansion structure, which allows the model to learn simultaneously from both old and new features by integrating a fusion selector after each convolutional layer. To further minimize potential conflicts between old and new features, we implement the Feature Selectors Gradient Resetting method, which sparsifies the fusion selectors and reduces the influence of redundant old features. Additionally, to address classification bias resulting from class imbalance, we design the Decoupled Balanced Distillation technique and apply Logit Adjustment to more effectively retain knowledge from the rehearsal set. Extensive experiments demonstrate that our <strong>L<sup>3</sup>Net</strong> framework outperforms state-of-the-art methods on widely used benchmarks, including CIFAR-100 and ImageNet-100/1000.</div></div>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"188 ","pages":"Article 107420"},"PeriodicalIF":6.0000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893608025002990","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Model-based class incremental learning (CIL) methods aim to address the challenge of catastrophic forgetting by retaining certain parameters and expanding the model architecture. However, retaining too many parameters can lead to an overly complex model, increasing inference overhead. Additionally, compressing these parameters to reduce the model size can result in performance degradation. To tackle these challenges, we propose a novel three-stage CIL framework called Localized and Layered Reparameterization for Incremental Learning (L3Net). The rationale behind our approach is to balance model complexity and performance by selectively expanding and optimizing critical components. Specifically, the framework introduces a Localized Dual-path Expansion structure, which allows the model to learn simultaneously from both old and new features by integrating a fusion selector after each convolutional layer. To further minimize potential conflicts between old and new features, we implement the Feature Selectors Gradient Resetting method, which sparsifies the fusion selectors and reduces the influence of redundant old features. Additionally, to address classification bias resulting from class imbalance, we design the Decoupled Balanced Distillation technique and apply Logit Adjustment to more effectively retain knowledge from the rehearsal set. Extensive experiments demonstrate that our L3Net framework outperforms state-of-the-art methods on widely used benchmarks, including CIFAR-100 and ImageNet-100/1000.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neural Networks
Neural Networks 工程技术-计算机:人工智能
CiteScore
13.90
自引率
7.70%
发文量
425
审稿时长
67 days
期刊介绍: Neural Networks is a platform that aims to foster an international community of scholars and practitioners interested in neural networks, deep learning, and other approaches to artificial intelligence and machine learning. Our journal invites submissions covering various aspects of neural networks research, from computational neuroscience and cognitive modeling to mathematical analyses and engineering applications. By providing a forum for interdisciplinary discussions between biology and technology, we aim to encourage the development of biologically-inspired artificial intelligence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信