Data orbits similarity conversion law of scaled-down model tests of ship structures under strong impact loads

IF 5.7 1区 工程技术 Q1 ENGINEERING, CIVIL
Xiongliang Yao , Renjie Huang , Kun Zhao , Yongran Yin
{"title":"Data orbits similarity conversion law of scaled-down model tests of ship structures under strong impact loads","authors":"Xiongliang Yao ,&nbsp;Renjie Huang ,&nbsp;Kun Zhao ,&nbsp;Yongran Yin","doi":"10.1016/j.tws.2025.113235","DOIUrl":null,"url":null,"abstract":"<div><div>The model test under strong impact loads constitutes a transient, strongly nonlinear, and non-stationary physical process that exhibits extreme sensitivity to system parameters, boundary conditions, and initial conditions. A minor perturbation induces bifurcation and abrupt changes in system dynamics, resulting in output uncertainty for model tests and significant challenges in achieving similarity conversion between models and prototypes. In this paper, the second law of similarity is applied to construct data orbits of impact responses for characterizing kinematic system evolution, and a principle of topologically conjugate conversion for similar systems in phase space is proposed. Through phase space reconstruction methodology, the kinematic evolution patterns of acceleration responses in ship structures under strong impact loads are investigated, with mapping functions of acceleration response data orbits derived in phase space. A similarity equation for model-to-prototype conversion is established based on the topologically conjugate conversion principle. Theoretical analysis demonstrates the rationality of introducing prediction coefficients in distortion models, while fundamental conditions for achieving similarity conversion in nonlinear dynamical systems are formulated. Finally, the numerical results from the single-layer reinforced plate rack and cabin section show that the data orbits corresponding to the acceleration responses of the 1:2 scaled model and the prototype have the same symbol sequences in the phase space under satisfying the similarity conversion condition, which verifies the correctness of the similarity conversion of data orbits for the scaling model test of the ship structures under the strong impact loads.</div></div>","PeriodicalId":49435,"journal":{"name":"Thin-Walled Structures","volume":"212 ","pages":"Article 113235"},"PeriodicalIF":5.7000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thin-Walled Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263823125003295","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

The model test under strong impact loads constitutes a transient, strongly nonlinear, and non-stationary physical process that exhibits extreme sensitivity to system parameters, boundary conditions, and initial conditions. A minor perturbation induces bifurcation and abrupt changes in system dynamics, resulting in output uncertainty for model tests and significant challenges in achieving similarity conversion between models and prototypes. In this paper, the second law of similarity is applied to construct data orbits of impact responses for characterizing kinematic system evolution, and a principle of topologically conjugate conversion for similar systems in phase space is proposed. Through phase space reconstruction methodology, the kinematic evolution patterns of acceleration responses in ship structures under strong impact loads are investigated, with mapping functions of acceleration response data orbits derived in phase space. A similarity equation for model-to-prototype conversion is established based on the topologically conjugate conversion principle. Theoretical analysis demonstrates the rationality of introducing prediction coefficients in distortion models, while fundamental conditions for achieving similarity conversion in nonlinear dynamical systems are formulated. Finally, the numerical results from the single-layer reinforced plate rack and cabin section show that the data orbits corresponding to the acceleration responses of the 1:2 scaled model and the prototype have the same symbol sequences in the phase space under satisfying the similarity conversion condition, which verifies the correctness of the similarity conversion of data orbits for the scaling model test of the ship structures under the strong impact loads.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Thin-Walled Structures
Thin-Walled Structures 工程技术-工程:土木
CiteScore
9.60
自引率
20.30%
发文量
801
审稿时长
66 days
期刊介绍: Thin-walled structures comprises an important and growing proportion of engineering construction with areas of application becoming increasingly diverse, ranging from aircraft, bridges, ships and oil rigs to storage vessels, industrial buildings and warehouses. Many factors, including cost and weight economy, new materials and processes and the growth of powerful methods of analysis have contributed to this growth, and led to the need for a journal which concentrates specifically on structures in which problems arise due to the thinness of the walls. This field includes cold– formed sections, plate and shell structures, reinforced plastics structures and aluminium structures, and is of importance in many branches of engineering. The primary criterion for consideration of papers in Thin–Walled Structures is that they must be concerned with thin–walled structures or the basic problems inherent in thin–walled structures. Provided this criterion is satisfied no restriction is placed on the type of construction, material or field of application. Papers on theory, experiment, design, etc., are published and it is expected that many papers will contain aspects of all three.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信