Nonlinear Rayleigh-Taylor instability in compressible viscoelastic fluids with an upper free boundary

IF 2.4 2区 数学 Q1 MATHEMATICS
Caifeng Liu , Wanwan Zhang
{"title":"Nonlinear Rayleigh-Taylor instability in compressible viscoelastic fluids with an upper free boundary","authors":"Caifeng Liu ,&nbsp;Wanwan Zhang","doi":"10.1016/j.jde.2025.113248","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we study the nonlinear Rayleigh-Taylor instability in the compressible viscoelastic fluid governed by the gravity-driven Oldroyd-B model in a finitely deep and horizontally periodic moving domain. Under the instability condition <span><math><mi>κ</mi><mo>&lt;</mo><msub><mrow><mi>κ</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span>, we first prove that there exist growing mode solutions to the linearized equations around a viscoelastic equilibrium <span><math><mo>(</mo><mover><mrow><mi>ρ</mi></mrow><mrow><mo>¯</mo></mrow></mover><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo><mo>,</mo><mn>0</mn><mo>,</mo><mover><mrow><mi>u</mi></mrow><mrow><mo>¯</mo></mrow></mover><mi>I</mi><mo>)</mo></math></span> for a smooth increasing density profile <span><math><mover><mrow><mi>ρ</mi></mrow><mrow><mo>¯</mo></mrow></mover></math></span>. Based on the finding of growing modes, we then show the nonlinear Rayleigh-Taylor instability of the above profile by constructing appropriate initial data for the nonlinear perturbation problem departing from the equilibrium and conducting some instability bootstrap arguments.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"432 ","pages":"Article 113248"},"PeriodicalIF":2.4000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625002694","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study the nonlinear Rayleigh-Taylor instability in the compressible viscoelastic fluid governed by the gravity-driven Oldroyd-B model in a finitely deep and horizontally periodic moving domain. Under the instability condition κ<κc, we first prove that there exist growing mode solutions to the linearized equations around a viscoelastic equilibrium (ρ¯(x1),0,u¯I) for a smooth increasing density profile ρ¯. Based on the finding of growing modes, we then show the nonlinear Rayleigh-Taylor instability of the above profile by constructing appropriate initial data for the nonlinear perturbation problem departing from the equilibrium and conducting some instability bootstrap arguments.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信