{"title":"Stability analysis for two coupled second order evolution equations","authors":"Jianghao Hao , Zhaobin Kuang , Zhuangyi Liu , Jiongmin Yong","doi":"10.1016/j.jde.2025.113246","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we provide a stability analysis for the following abstract system of two coupled second order evolution equations<span><span><span><math><mrow><mo>{</mo><mtable><mtr><mtd><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi><mi>t</mi></mrow></msub><mo>=</mo><mo>−</mo><mi>a</mi><msup><mrow><mi>A</mi></mrow><mrow><mi>γ</mi></mrow></msup><mi>u</mi><mo>+</mo><mi>b</mi><msup><mrow><mi>A</mi></mrow><mrow><mi>α</mi></mrow></msup><msub><mrow><mi>y</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>,</mo></mtd></mtr><mtr><mtd><msub><mrow><mi>y</mi></mrow><mrow><mi>t</mi><mi>t</mi></mrow></msub><mo>=</mo><mo>−</mo><mi>A</mi><mi>y</mi><mo>−</mo><mi>b</mi><msup><mrow><mi>A</mi></mrow><mrow><mi>α</mi></mrow></msup><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>−</mo><mi>k</mi><msup><mrow><mi>A</mi></mrow><mrow><mi>β</mi></mrow></msup><msub><mrow><mi>y</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>,</mo></mtd></mtr><mtr><mtd><mi>u</mi><mo>(</mo><mn>0</mn><mo>)</mo><mo>=</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><mspace></mspace><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>(</mo><mn>0</mn><mo>)</mo><mo>=</mo><msub><mrow><mi>v</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><mspace></mspace><mi>y</mi><mo>(</mo><mn>0</mn><mo>)</mo><mo>=</mo><msub><mrow><mi>y</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><mspace></mspace><msub><mrow><mi>y</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>(</mo><mn>0</mn><mo>)</mo><mo>=</mo><msub><mrow><mi>z</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>.</mo></mtd></mtr></mtable></mrow></math></span></span></span> where <em>A</em> is a self-adjoint, positive definite operator on a complex Hilbert space <em>H</em>, and parameters <span><math><mo>(</mo><mi>α</mi><mo>,</mo><mi>β</mi><mo>)</mo><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><mfrac><mrow><mi>γ</mi><mo>+</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>]</mo><mo>×</mo><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></math></span> with <span><math><mi>γ</mi><mo>∈</mo><mo>[</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>,</mo><mn>2</mn><mo>]</mo></math></span>. We are able to completely divide the parameter region into subsets where the semigroup associated with the system is (i) exponentially stable, (ii) polynomially stable of optimal order, and (iii) merely strong stable.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"432 ","pages":"Article 113246"},"PeriodicalIF":2.4000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002203962500261X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we provide a stability analysis for the following abstract system of two coupled second order evolution equations where A is a self-adjoint, positive definite operator on a complex Hilbert space H, and parameters with . We are able to completely divide the parameter region into subsets where the semigroup associated with the system is (i) exponentially stable, (ii) polynomially stable of optimal order, and (iii) merely strong stable.
期刊介绍:
The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools.
Research Areas Include:
• Mathematical control theory
• Ordinary differential equations
• Partial differential equations
• Stochastic differential equations
• Topological dynamics
• Related topics