Selective dual-mode detection of doxycycline using orange carbon dots/calcium-murexide composite system: From spectroscopic analysis to smartphone-based sensing
Fatma A.M. Abdel-aal , Ashraf M. Mahmoud , Azza H. Rageh , Mohamed R. Elmasry , Yousef A. Bin Jardan , Mohamed M. El-Wekil , Al-Montaser Bellah H. Ali
{"title":"Selective dual-mode detection of doxycycline using orange carbon dots/calcium-murexide composite system: From spectroscopic analysis to smartphone-based sensing","authors":"Fatma A.M. Abdel-aal , Ashraf M. Mahmoud , Azza H. Rageh , Mohamed R. Elmasry , Yousef A. Bin Jardan , Mohamed M. El-Wekil , Al-Montaser Bellah H. Ali","doi":"10.1016/j.talo.2025.100438","DOIUrl":null,"url":null,"abstract":"<div><div>A novel and selective analytical method has been developed for doxycycline (DOX) determination, addressing the critical need for monitoring this widely used antibiotic in environmental samples. The method employs a hybrid sensing system combining orange-emitting carbon dots (O-CDs) with a calcium-murexide (Ca@Mu) complex, offering a unique dual-mode detection approach. Unlike conventional methods that rely on direct fluorescence quenching by DOX, which often suffer from poor selectivity, this system utilizes the competitive binding between DOX and murexide for Ca<sup>2+</sup> ions. Initially, the pink-colored Ca@Mu complex formed under alkaline conditions causes fluorescence quenching of O-CDs at 552 nm. Upon introduction of DOX, its stronger Ca<sup>2+</sup>-binding affinity leads to the formation of a calcium-DOX complex, liberating free Mu and triggering both colorimetric (pink to orange) and fluorometric (restoration of O-CDs emission) responses. Comprehensive characterization and mechanistic investigations employing different spectroscopic techniques confirmed the sensing mechanism. The method demonstrates excellent selectivity for DOX among other tetracyclines and potential interferents, along with impressive analytical performance including good linearity (1.0-35.0 μM), low detection limit (325 nM), and high precision. Additionally, a smartphone-based colorimetric platform was developed for convenient on-site analysis. The practical utility of this method was validated through successful determination of DOX in environmental water samples with excellent recovery rates, offering a reliable and user-friendly approach for environmental monitoring of this important antibiotic.</div></div>","PeriodicalId":436,"journal":{"name":"Talanta Open","volume":"11 ","pages":"Article 100438"},"PeriodicalIF":4.1000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Talanta Open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666831925000402","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
A novel and selective analytical method has been developed for doxycycline (DOX) determination, addressing the critical need for monitoring this widely used antibiotic in environmental samples. The method employs a hybrid sensing system combining orange-emitting carbon dots (O-CDs) with a calcium-murexide (Ca@Mu) complex, offering a unique dual-mode detection approach. Unlike conventional methods that rely on direct fluorescence quenching by DOX, which often suffer from poor selectivity, this system utilizes the competitive binding between DOX and murexide for Ca2+ ions. Initially, the pink-colored Ca@Mu complex formed under alkaline conditions causes fluorescence quenching of O-CDs at 552 nm. Upon introduction of DOX, its stronger Ca2+-binding affinity leads to the formation of a calcium-DOX complex, liberating free Mu and triggering both colorimetric (pink to orange) and fluorometric (restoration of O-CDs emission) responses. Comprehensive characterization and mechanistic investigations employing different spectroscopic techniques confirmed the sensing mechanism. The method demonstrates excellent selectivity for DOX among other tetracyclines and potential interferents, along with impressive analytical performance including good linearity (1.0-35.0 μM), low detection limit (325 nM), and high precision. Additionally, a smartphone-based colorimetric platform was developed for convenient on-site analysis. The practical utility of this method was validated through successful determination of DOX in environmental water samples with excellent recovery rates, offering a reliable and user-friendly approach for environmental monitoring of this important antibiotic.