{"title":"Truncated theta series from the Bailey lattice","authors":"Xiangyu Ding, Lisa Hui Sun","doi":"10.1016/j.aam.2025.102884","DOIUrl":null,"url":null,"abstract":"<div><div>In 2012, Andrews and Merca obtained a truncated version of Euler's pentagonal number theorem and showed the nonnegativity related to partition functions. Meanwhile, Andrews and Merca, Guo and Zeng independently conjectured that the truncated Jacobi triple product series has nonnegative coefficients, which has been confirmed analytically and also combinatorially. In 2022, Merca proposed a stronger version for this conjecture. In this paper, by applying Agarwal, Andrews and Bressoud's identity derived from the Bailey lattice, we obtain a truncated version for the Jacobi triple product series with odd basis, which reduces to the Andrews–Gordon identity as a special instance. As consequences, we obtain new truncated forms for Euler's pentagonal number theorem, Gauss' theta series on triangular numbers and square numbers, which lead to inequalities for certain partition functions. Moreover, by considering a truncated theta series involving <em>ℓ</em>-regular partitions, we confirm a conjecture proposed by Ballantine and Merca about 6-regular partitions and show that Merca's stronger conjecture on truncated Jacobi triple product series holds when <span><math><mi>R</mi><mo>=</mo><mn>3</mn><mi>S</mi></math></span> for <span><math><mi>S</mi><mo>≥</mo><mn>1</mn></math></span>.</div></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":"167 ","pages":"Article 102884"},"PeriodicalIF":1.0000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196885825000466","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In 2012, Andrews and Merca obtained a truncated version of Euler's pentagonal number theorem and showed the nonnegativity related to partition functions. Meanwhile, Andrews and Merca, Guo and Zeng independently conjectured that the truncated Jacobi triple product series has nonnegative coefficients, which has been confirmed analytically and also combinatorially. In 2022, Merca proposed a stronger version for this conjecture. In this paper, by applying Agarwal, Andrews and Bressoud's identity derived from the Bailey lattice, we obtain a truncated version for the Jacobi triple product series with odd basis, which reduces to the Andrews–Gordon identity as a special instance. As consequences, we obtain new truncated forms for Euler's pentagonal number theorem, Gauss' theta series on triangular numbers and square numbers, which lead to inequalities for certain partition functions. Moreover, by considering a truncated theta series involving ℓ-regular partitions, we confirm a conjecture proposed by Ballantine and Merca about 6-regular partitions and show that Merca's stronger conjecture on truncated Jacobi triple product series holds when for .
期刊介绍:
Interdisciplinary in its coverage, Advances in Applied Mathematics is dedicated to the publication of original and survey articles on rigorous methods and results in applied mathematics. The journal features articles on discrete mathematics, discrete probability theory, theoretical statistics, mathematical biology and bioinformatics, applied commutative algebra and algebraic geometry, convexity theory, experimental mathematics, theoretical computer science, and other areas.
Emphasizing papers that represent a substantial mathematical advance in their field, the journal is an excellent source of current information for mathematicians, computer scientists, applied mathematicians, physicists, statisticians, and biologists. Over the past ten years, Advances in Applied Mathematics has published research papers written by many of the foremost mathematicians of our time.