Exergy-energy, economic and environmental evaluation of a solid oxide fuel cell based trigeneration system using double effect vapor absorption refrigeration system
{"title":"Exergy-energy, economic and environmental evaluation of a solid oxide fuel cell based trigeneration system using double effect vapor absorption refrigeration system","authors":"Yunis Khan , Pawan Kumar Singh , Aftab Anjum , K.K. Sivakumar , Shikha Gupta , Subhash Mishra","doi":"10.1016/j.ijrefrig.2025.03.029","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, a heat recovery steam generator (HRSG) and double-effect absorption refrigeration system (DVARS) have been implemented in conventional hybrid solid oxide fuel cell (SOFC)-gas turbines (GT) for applications like power generation, steam production, and cooling effects for industrial purposes. The performance of the proposed trigeneration system has been evaluated numerically on the basis of thermodynamic, economic, and environmental aspects using engineering equation software. The results show that by implementing the HRSG and DVARS in the conventional SOFC-GT system, energy efficiency, exergy efficiency, and the total cost of the proposed trigeneration plant (SOFC-GT-HRSG-DVARS) were enhanced by 36.51 %, 4.14 %, and 1.76 %, respectively. Additionally, cooling effects of 100 kW were obtained from the DVARS at 5 °C for general-purpose applications, and heating effects of 101.4 kW were obtained through the HRSG by generating saturated steam. However, the CO<sub>2</sub> emission per MWh of output energy was reduced by 26.73 %.</div></div>","PeriodicalId":14274,"journal":{"name":"International Journal of Refrigeration-revue Internationale Du Froid","volume":"174 ","pages":"Pages 343-358"},"PeriodicalIF":3.5000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Refrigeration-revue Internationale Du Froid","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0140700725001215","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, a heat recovery steam generator (HRSG) and double-effect absorption refrigeration system (DVARS) have been implemented in conventional hybrid solid oxide fuel cell (SOFC)-gas turbines (GT) for applications like power generation, steam production, and cooling effects for industrial purposes. The performance of the proposed trigeneration system has been evaluated numerically on the basis of thermodynamic, economic, and environmental aspects using engineering equation software. The results show that by implementing the HRSG and DVARS in the conventional SOFC-GT system, energy efficiency, exergy efficiency, and the total cost of the proposed trigeneration plant (SOFC-GT-HRSG-DVARS) were enhanced by 36.51 %, 4.14 %, and 1.76 %, respectively. Additionally, cooling effects of 100 kW were obtained from the DVARS at 5 °C for general-purpose applications, and heating effects of 101.4 kW were obtained through the HRSG by generating saturated steam. However, the CO2 emission per MWh of output energy was reduced by 26.73 %.
期刊介绍:
The International Journal of Refrigeration is published for the International Institute of Refrigeration (IIR) by Elsevier. It is essential reading for all those wishing to keep abreast of research and industrial news in refrigeration, air conditioning and associated fields. This is particularly important in these times of rapid introduction of alternative refrigerants and the emergence of new technology. The journal has published special issues on alternative refrigerants and novel topics in the field of boiling, condensation, heat pumps, food refrigeration, carbon dioxide, ammonia, hydrocarbons, magnetic refrigeration at room temperature, sorptive cooling, phase change materials and slurries, ejector technology, compressors, and solar cooling.
As well as original research papers the International Journal of Refrigeration also includes review articles, papers presented at IIR conferences, short reports and letters describing preliminary results and experimental details, and letters to the Editor on recent areas of discussion and controversy. Other features include forthcoming events, conference reports and book reviews.
Papers are published in either English or French with the IIR news section in both languages.