Addressing plastic pollution: A 3D-printed porous PAC scaffold for effective nanoplastic removal

IF 8.1 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
Namyeon Kim , Da-Yeon Kim , Yunsoo Chang , Eui-Man Jung , Seung-Woo Lee , Eun-Hee Lee
{"title":"Addressing plastic pollution: A 3D-printed porous PAC scaffold for effective nanoplastic removal","authors":"Namyeon Kim ,&nbsp;Da-Yeon Kim ,&nbsp;Yunsoo Chang ,&nbsp;Eui-Man Jung ,&nbsp;Seung-Woo Lee ,&nbsp;Eun-Hee Lee","doi":"10.1016/j.chemosphere.2025.144351","DOIUrl":null,"url":null,"abstract":"<div><div>The extensive presence of nanoplastics has raised concerns about their effects on ecosystems and human health. Because of the heightened ecological and biological risks posed by nanoplastics, effective removal strategies for these particles are essential. This study focuses on the use of additive manufacturing techniques to fabricate a three-dimensional (3D) structure with integrated powdered activated carbon (PAC) as an active adsorbent for the removal of various types of polymer nanoplastics. The 3D-printed porous PAC scaffold was characterized using various analysis methods, and its adsorption kinetics and mechanisms for polystyrene (PS) nanoplastics were elucidated. The 3D PAC's versatility was verified against several other nanoplastics, including polyethylene terephthalate, low-density polyethylene, polypropylene, and polyvinyl chloride. The results demonstrated that the 3D PAC scaffold effectively adsorbs PS nanoplastics through pore filling and chemical processes and that the adsorption exhibits pseudo-first-order kinetics and conforms to the Langmuir isotherm model. The 3D PAC maintained its adsorption performance under various environmental conditions and exhibited promising results when used to remove nanoplastics from real freshwater samples. This research demonstrates the potential of 3D-printed PACs to address the growing challenge of plastic pollution.</div></div>","PeriodicalId":276,"journal":{"name":"Chemosphere","volume":"377 ","pages":"Article 144351"},"PeriodicalIF":8.1000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemosphere","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045653525002930","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The extensive presence of nanoplastics has raised concerns about their effects on ecosystems and human health. Because of the heightened ecological and biological risks posed by nanoplastics, effective removal strategies for these particles are essential. This study focuses on the use of additive manufacturing techniques to fabricate a three-dimensional (3D) structure with integrated powdered activated carbon (PAC) as an active adsorbent for the removal of various types of polymer nanoplastics. The 3D-printed porous PAC scaffold was characterized using various analysis methods, and its adsorption kinetics and mechanisms for polystyrene (PS) nanoplastics were elucidated. The 3D PAC's versatility was verified against several other nanoplastics, including polyethylene terephthalate, low-density polyethylene, polypropylene, and polyvinyl chloride. The results demonstrated that the 3D PAC scaffold effectively adsorbs PS nanoplastics through pore filling and chemical processes and that the adsorption exhibits pseudo-first-order kinetics and conforms to the Langmuir isotherm model. The 3D PAC maintained its adsorption performance under various environmental conditions and exhibited promising results when used to remove nanoplastics from real freshwater samples. This research demonstrates the potential of 3D-printed PACs to address the growing challenge of plastic pollution.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemosphere
Chemosphere 环境科学-环境科学
CiteScore
15.80
自引率
8.00%
发文量
4975
审稿时长
3.4 months
期刊介绍: Chemosphere, being an international multidisciplinary journal, is dedicated to publishing original communications and review articles on chemicals in the environment. The scope covers a wide range of topics, including the identification, quantification, behavior, fate, toxicology, treatment, and remediation of chemicals in the bio-, hydro-, litho-, and atmosphere, ensuring the broad dissemination of research in this field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信