Seismic performance assessment of composite breakwater on liquefiable seabed foundations with various reinforcement schemes

IF 4.6 2区 工程技术 Q1 ENGINEERING, CIVIL
Minghao Li, Xiaowei Tang, Kaiwei Wang, Chengxiang Song, Shuai Li
{"title":"Seismic performance assessment of composite breakwater on liquefiable seabed foundations with various reinforcement schemes","authors":"Minghao Li,&nbsp;Xiaowei Tang,&nbsp;Kaiwei Wang,&nbsp;Chengxiang Song,&nbsp;Shuai Li","doi":"10.1016/j.oceaneng.2025.121013","DOIUrl":null,"url":null,"abstract":"<div><div>As an important coastal protective structure, the breakwater is prone to failure due to foundation damage under seismic actions. However, the seismic performance evaluation of breakwaters has received little attention. This study conducts a seismic fragility analysis of composite breakwaters constructed on liquefiable foundations. By adopting a performance-based seismic design (PBSD) approach and considering the record-to-record (RTR) variability of ground motions, the seismic performance of the breakwaters is assessed over their entire lifecycle. Based on the results of the parameter sensitivity analysis, the reinforcement schemes were proposed in terms of delaying foundation liquefaction and limiting the lateral displacement of liquefied soil. The results of the seismic intensity measure (IM) parameter selection indicate that the commonly used peak ground acceleration (PGA) exhibits a weak correlation with the seismic response of the breakwater, whereas the cumulative absolute velocity (CAV) has a strong correlation. The comparison of the reinforcement schemes shows that the Dense Sand Column (DC) scheme provides significant reinforcement effects, while the Concrete Sheet Pile (CSP) scheme is more suitable for reinforcing existing breakwaters. The seismic performance assessment framework can also be applied to other structures where structural damage is closely related to foundation deformation, such as caisson quays and embankments.</div></div>","PeriodicalId":19403,"journal":{"name":"Ocean Engineering","volume":"328 ","pages":"Article 121013"},"PeriodicalIF":4.6000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ocean Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0029801825007267","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

As an important coastal protective structure, the breakwater is prone to failure due to foundation damage under seismic actions. However, the seismic performance evaluation of breakwaters has received little attention. This study conducts a seismic fragility analysis of composite breakwaters constructed on liquefiable foundations. By adopting a performance-based seismic design (PBSD) approach and considering the record-to-record (RTR) variability of ground motions, the seismic performance of the breakwaters is assessed over their entire lifecycle. Based on the results of the parameter sensitivity analysis, the reinforcement schemes were proposed in terms of delaying foundation liquefaction and limiting the lateral displacement of liquefied soil. The results of the seismic intensity measure (IM) parameter selection indicate that the commonly used peak ground acceleration (PGA) exhibits a weak correlation with the seismic response of the breakwater, whereas the cumulative absolute velocity (CAV) has a strong correlation. The comparison of the reinforcement schemes shows that the Dense Sand Column (DC) scheme provides significant reinforcement effects, while the Concrete Sheet Pile (CSP) scheme is more suitable for reinforcing existing breakwaters. The seismic performance assessment framework can also be applied to other structures where structural damage is closely related to foundation deformation, such as caisson quays and embankments.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ocean Engineering
Ocean Engineering 工程技术-工程:大洋
CiteScore
7.30
自引率
34.00%
发文量
2379
审稿时长
8.1 months
期刊介绍: Ocean Engineering provides a medium for the publication of original research and development work in the field of ocean engineering. Ocean Engineering seeks papers in the following topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信