Le Li , Ziyi Liu , Wenfeng Liu , Zeyu Wang , Chunsheng Zhou , Qiang Zeng
{"title":"Microstructure and transport properties of cement mortar made with recycled fine ceramic aggregates","authors":"Le Li , Ziyi Liu , Wenfeng Liu , Zeyu Wang , Chunsheng Zhou , Qiang Zeng","doi":"10.1016/j.dibe.2025.100643","DOIUrl":null,"url":null,"abstract":"<div><div>Effective utilization of recycled ceramics in building materials has received growing interests. This study focuses on the utilization of household ceramic wastes generated by the ceramic manufacturing industry in Jingdezhen. An experimental study on strengths (compression/bending tests), durability indexes (gas permeation/water absorption tests), and microstructure (mercury intrusion porosimetry/scanning electron microscopy techniques) of mortars using fine ceramic aggregate (CA) as a partial and total substitution of natural sand was carried out. Results indicate that (1) CA incorporation improves the compressive/flexural strengths at 20% substitution and further substitution leads to reduction in the strengths; (2) CA-modified mortars possess a higher ressistance against gas permeation and water absorption; (3) CA roughly narrows the critical pore size, and the durability indexes present linear correlations with characteristic pore parameters; (4) reasonable utilization of household ceramic wastes in concrete construction can contribute to waste management along with enhancing concrete properties.</div></div>","PeriodicalId":34137,"journal":{"name":"Developments in the Built Environment","volume":"22 ","pages":"Article 100643"},"PeriodicalIF":6.2000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developments in the Built Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666165925000432","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Effective utilization of recycled ceramics in building materials has received growing interests. This study focuses on the utilization of household ceramic wastes generated by the ceramic manufacturing industry in Jingdezhen. An experimental study on strengths (compression/bending tests), durability indexes (gas permeation/water absorption tests), and microstructure (mercury intrusion porosimetry/scanning electron microscopy techniques) of mortars using fine ceramic aggregate (CA) as a partial and total substitution of natural sand was carried out. Results indicate that (1) CA incorporation improves the compressive/flexural strengths at 20% substitution and further substitution leads to reduction in the strengths; (2) CA-modified mortars possess a higher ressistance against gas permeation and water absorption; (3) CA roughly narrows the critical pore size, and the durability indexes present linear correlations with characteristic pore parameters; (4) reasonable utilization of household ceramic wastes in concrete construction can contribute to waste management along with enhancing concrete properties.
期刊介绍:
Developments in the Built Environment (DIBE) is a recently established peer-reviewed gold open access journal, ensuring that all accepted articles are permanently and freely accessible. Focused on civil engineering and the built environment, DIBE publishes original papers and short communications. Encompassing topics such as construction materials and building sustainability, the journal adopts a holistic approach with the aim of benefiting the community.