A decline of linear relation between outgoing longwave radiation and temperature during geomagnetic disturbances

IF 1.8 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS
A.A. Karakhanyan, S.I. Molodykh
{"title":"A decline of linear relation between outgoing longwave radiation and temperature during geomagnetic disturbances","authors":"A.A. Karakhanyan,&nbsp;S.I. Molodykh","doi":"10.1016/j.jastp.2025.106503","DOIUrl":null,"url":null,"abstract":"<div><div>Climate modeling is the main instrument to predict future climate changes. Despite the recent advances in this field, there is still high uncertainty concerning the contribution of natural (including solar/geomagnetic activity) and anthropogenic factors to the current climate changes. Based on the observational data, we studied the linear relation between Outgoing Longwave Radiation (OLR) and Near-Surface Temperature (NST) under quiet and disturbed geomagnetic conditions 1979 through 2022. Water vapor (due to its optical properties) was established to be the main factor to cause a linear OLR-NST relation. The OLR-NST correlation in the optically thin atmosphere above 30° corresponds to quiet geomagnetic conditions and so does the anticorrelation between the above parameters in the optically thick low-latitude atmosphere. The winter ocean regions of the OLR-NST anticorrelation up to 60° in the both hemispheres under quiet geomagnetic conditions related to the clouds. We found the geomagnetic disturbances lead to decrease in the OLR response to the NST variations in the optically thin atmosphere within the mid- and high latitudes, particularly during spring. The considerable changes of linear OLR-NST relation are observed in the optically thick low-latitude atmosphere during geomagnetic disturbances.</div></div>","PeriodicalId":15096,"journal":{"name":"Journal of Atmospheric and Solar-Terrestrial Physics","volume":"270 ","pages":"Article 106503"},"PeriodicalIF":1.8000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Atmospheric and Solar-Terrestrial Physics","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364682625000872","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Climate modeling is the main instrument to predict future climate changes. Despite the recent advances in this field, there is still high uncertainty concerning the contribution of natural (including solar/geomagnetic activity) and anthropogenic factors to the current climate changes. Based on the observational data, we studied the linear relation between Outgoing Longwave Radiation (OLR) and Near-Surface Temperature (NST) under quiet and disturbed geomagnetic conditions 1979 through 2022. Water vapor (due to its optical properties) was established to be the main factor to cause a linear OLR-NST relation. The OLR-NST correlation in the optically thin atmosphere above 30° corresponds to quiet geomagnetic conditions and so does the anticorrelation between the above parameters in the optically thick low-latitude atmosphere. The winter ocean regions of the OLR-NST anticorrelation up to 60° in the both hemispheres under quiet geomagnetic conditions related to the clouds. We found the geomagnetic disturbances lead to decrease in the OLR response to the NST variations in the optically thin atmosphere within the mid- and high latitudes, particularly during spring. The considerable changes of linear OLR-NST relation are observed in the optically thick low-latitude atmosphere during geomagnetic disturbances.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Atmospheric and Solar-Terrestrial Physics
Journal of Atmospheric and Solar-Terrestrial Physics 地学-地球化学与地球物理
CiteScore
4.10
自引率
5.30%
发文量
95
审稿时长
6 months
期刊介绍: The Journal of Atmospheric and Solar-Terrestrial Physics (JASTP) is an international journal concerned with the inter-disciplinary science of the Earth''s atmospheric and space environment, especially the highly varied and highly variable physical phenomena that occur in this natural laboratory and the processes that couple them. The journal covers the physical processes operating in the troposphere, stratosphere, mesosphere, thermosphere, ionosphere, magnetosphere, the Sun, interplanetary medium, and heliosphere. Phenomena occurring in other "spheres", solar influences on climate, and supporting laboratory measurements are also considered. The journal deals especially with the coupling between the different regions. Solar flares, coronal mass ejections, and other energetic events on the Sun create interesting and important perturbations in the near-Earth space environment. The physics of such "space weather" is central to the Journal of Atmospheric and Solar-Terrestrial Physics and the journal welcomes papers that lead in the direction of a predictive understanding of the coupled system. Regarding the upper atmosphere, the subjects of aeronomy, geomagnetism and geoelectricity, auroral phenomena, radio wave propagation, and plasma instabilities, are examples within the broad field of solar-terrestrial physics which emphasise the energy exchange between the solar wind, the magnetospheric and ionospheric plasmas, and the neutral gas. In the lower atmosphere, topics covered range from mesoscale to global scale dynamics, to atmospheric electricity, lightning and its effects, and to anthropogenic changes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信