Guillaume Beaudoin-Bussières , Alexandra Tauzin , Katrina Dionne , Omar El Ferri , Mehdi Benlarbi , Catherine Bourassa , Halima Medjahed , Renée Bazin , Marceline Côté , Andrés Finzi
{"title":"Multiple exposures to SARS-CoV-2 Spike enhance cross-reactive antibody-dependent cellular cytotoxicity against SARS-CoV-1","authors":"Guillaume Beaudoin-Bussières , Alexandra Tauzin , Katrina Dionne , Omar El Ferri , Mehdi Benlarbi , Catherine Bourassa , Halima Medjahed , Renée Bazin , Marceline Côté , Andrés Finzi","doi":"10.1016/j.virol.2025.110512","DOIUrl":null,"url":null,"abstract":"<div><div>Vaccination or infection by SARS-CoV-2 elicits a protective immune response against severe outcomes. It has been reported that SARS-CoV-2 infection or vaccination elicits cross-reactive antibodies against other betacoronaviruses. While plasma neutralizing capacity was studied in great detail, their Fc-effector functions remain understudied. Here, we analyzed Spike recognition, neutralization and antibody-dependent cellular cytotoxicity (ADCC) against D614G, a recent Omicron subvariant of SARS-CoV-2 (JN.1) and SARS-CoV-1. Plasma from individuals before their first dose of mRNA vaccine, and following their second, third and sixth doses were analyzed. Despite poor neutralization activity observed after the second and third vaccine doses, ADCC was readily detected. By the sixth dose, individuals could neutralize and mediate ADCC against JN.1 and SARS-CoV-1. Since previous reports have shown that Fc-effector functions were associated with survival from acute infection, these results suggest that ADCC could help in combating future SARS-CoV-2 variants as well as closely related coronaviruses.</div></div>","PeriodicalId":23666,"journal":{"name":"Virology","volume":"607 ","pages":"Article 110512"},"PeriodicalIF":2.8000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Virology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0042682225001254","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"VIROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Vaccination or infection by SARS-CoV-2 elicits a protective immune response against severe outcomes. It has been reported that SARS-CoV-2 infection or vaccination elicits cross-reactive antibodies against other betacoronaviruses. While plasma neutralizing capacity was studied in great detail, their Fc-effector functions remain understudied. Here, we analyzed Spike recognition, neutralization and antibody-dependent cellular cytotoxicity (ADCC) against D614G, a recent Omicron subvariant of SARS-CoV-2 (JN.1) and SARS-CoV-1. Plasma from individuals before their first dose of mRNA vaccine, and following their second, third and sixth doses were analyzed. Despite poor neutralization activity observed after the second and third vaccine doses, ADCC was readily detected. By the sixth dose, individuals could neutralize and mediate ADCC against JN.1 and SARS-CoV-1. Since previous reports have shown that Fc-effector functions were associated with survival from acute infection, these results suggest that ADCC could help in combating future SARS-CoV-2 variants as well as closely related coronaviruses.
期刊介绍:
Launched in 1955, Virology is a broad and inclusive journal that welcomes submissions on all aspects of virology including plant, animal, microbial and human viruses. The journal publishes basic research as well as pre-clinical and clinical studies of vaccines, anti-viral drugs and their development, anti-viral therapies, and computational studies of virus infections. Any submission that is of broad interest to the community of virologists/vaccinologists and reporting scientifically accurate and valuable research will be considered for publication, including negative findings and multidisciplinary work.Virology is open to reviews, research manuscripts, short communication, registered reports as well as follow-up manuscripts.