Development and validation of a convenient dementia risk prediction tool for diabetic population: A large and longitudinal machine learning cohort study

IF 4.9 2区 医学 Q1 CLINICAL NEUROLOGY
Pei Yang , Xuan Xiao , Yihui Li , Xu Cao , Maiping Li , Xinting Liu , Lianggeng Gong , Feng Liu , Xi-jian Dai
{"title":"Development and validation of a convenient dementia risk prediction tool for diabetic population: A large and longitudinal machine learning cohort study","authors":"Pei Yang ,&nbsp;Xuan Xiao ,&nbsp;Yihui Li ,&nbsp;Xu Cao ,&nbsp;Maiping Li ,&nbsp;Xinting Liu ,&nbsp;Lianggeng Gong ,&nbsp;Feng Liu ,&nbsp;Xi-jian Dai","doi":"10.1016/j.jad.2025.03.135","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Diabetes mellitus has been shown to increase the risk of dementia, with diabetic patients demonstrating twice the dementia incidence rate of non-diabetic populations. We aimed to develop and validate a novel machine learning-based dementia risk prediction tool specifically tailored for diabetic population.</div></div><div><h3>Methods</h3><div>Using a prospective from 42,881 diabetic individuals in the UK Biobank, a rigorous multi-stage selection framework was implemented to optimize feature-outcome associations from 190 variables, and 32 predictors were final retained. Subsequently, eight data analysis strategies were used to develop and validate the dementia risk prediction model. Model performance was assessed using area under the curve (AUC) metrics.</div></div><div><h3>Results</h3><div>During a median follow-up of 9.60 years, 1337 incident dementia cases were identified among diabetic population. The Adaboost classifier demonstrated robust performance across different predictor sets: full model with 32 predictors versus streamlined simplified model with 13 predictors selected through forward feature subset selection algorithm (AUC: 0.805 ± 0.005 vs. 0.801 ± 0.005; <em>p</em> = 0.200) in model development employing an 8:2 data split (5-fold cross-validation for training). To facilitate community generalization and clinical applicability, the simplified model, named DRP-Diabetes, was deployed to a visual interactive web application for individualized dementia risk assessment.</div></div><div><h3>Limitations</h3><div>Some variables were based on self-reported.</div></div><div><h3>Conclusions</h3><div>A convenient and reliable dementia risk prediction tool was developed and validated for diabetic population, which could help individuals identify their potential risk profile and provide guidance on precise and timely actions to promote dementia delay or prevention.</div></div>","PeriodicalId":14963,"journal":{"name":"Journal of affective disorders","volume":"380 ","pages":"Pages 298-307"},"PeriodicalIF":4.9000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of affective disorders","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165032725004835","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Diabetes mellitus has been shown to increase the risk of dementia, with diabetic patients demonstrating twice the dementia incidence rate of non-diabetic populations. We aimed to develop and validate a novel machine learning-based dementia risk prediction tool specifically tailored for diabetic population.

Methods

Using a prospective from 42,881 diabetic individuals in the UK Biobank, a rigorous multi-stage selection framework was implemented to optimize feature-outcome associations from 190 variables, and 32 predictors were final retained. Subsequently, eight data analysis strategies were used to develop and validate the dementia risk prediction model. Model performance was assessed using area under the curve (AUC) metrics.

Results

During a median follow-up of 9.60 years, 1337 incident dementia cases were identified among diabetic population. The Adaboost classifier demonstrated robust performance across different predictor sets: full model with 32 predictors versus streamlined simplified model with 13 predictors selected through forward feature subset selection algorithm (AUC: 0.805 ± 0.005 vs. 0.801 ± 0.005; p = 0.200) in model development employing an 8:2 data split (5-fold cross-validation for training). To facilitate community generalization and clinical applicability, the simplified model, named DRP-Diabetes, was deployed to a visual interactive web application for individualized dementia risk assessment.

Limitations

Some variables were based on self-reported.

Conclusions

A convenient and reliable dementia risk prediction tool was developed and validated for diabetic population, which could help individuals identify their potential risk profile and provide guidance on precise and timely actions to promote dementia delay or prevention.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of affective disorders
Journal of affective disorders 医学-精神病学
CiteScore
10.90
自引率
6.10%
发文量
1319
审稿时长
9.3 weeks
期刊介绍: The Journal of Affective Disorders publishes papers concerned with affective disorders in the widest sense: depression, mania, mood spectrum, emotions and personality, anxiety and stress. It is interdisciplinary and aims to bring together different approaches for a diverse readership. Top quality papers will be accepted dealing with any aspect of affective disorders, including neuroimaging, cognitive neurosciences, genetics, molecular biology, experimental and clinical neurosciences, pharmacology, neuroimmunoendocrinology, intervention and treatment trials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信