Siyuan Chen , Tanveer Talokder , Yusuf Mahadik , Adam Thompson , Stephen Hallett , Jonathan Belnoue
{"title":"Preform variability propagation in non-crimp fabric (NCF) forming","authors":"Siyuan Chen , Tanveer Talokder , Yusuf Mahadik , Adam Thompson , Stephen Hallett , Jonathan Belnoue","doi":"10.1016/j.compositesb.2025.112418","DOIUrl":null,"url":null,"abstract":"<div><div>Eliminating wrinkles generated during the manufacturing of structures made from composite materials is challenging due to large material and process variabilities. In this work, an effort is made to quantify the wrinkling variability when forming dry non-crimp fabric (NCF) and to correlate this with measured material (and process) variabilities. A forming cell instrumented with a multi-camera 3D digital image correlation (DIC) system was built to enable precise reconstruction of the morphology of the formed 3D preforms and any wrinkles that occur. Quantification of wrinkles and their variability was conducted and their (lack of) correlation with the NCF material's macro-scale shear and bending behaviour was analysed. Meso-scale material and process variabilities were also measured and quantified. This was followed by a sensitivity analysis on their effect on wrinkling variability and highlighted the prime importance of tow-orientation and fabric pre-shear. This work deepens the understanding of NCF wrinkling behaviour and open the door to the development of more accurate modelling tools and digital twin systems that can help robustly eliminate wrinkles.</div></div>","PeriodicalId":10660,"journal":{"name":"Composites Part B: Engineering","volume":"299 ","pages":"Article 112418"},"PeriodicalIF":12.7000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part B: Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359836825003191","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Eliminating wrinkles generated during the manufacturing of structures made from composite materials is challenging due to large material and process variabilities. In this work, an effort is made to quantify the wrinkling variability when forming dry non-crimp fabric (NCF) and to correlate this with measured material (and process) variabilities. A forming cell instrumented with a multi-camera 3D digital image correlation (DIC) system was built to enable precise reconstruction of the morphology of the formed 3D preforms and any wrinkles that occur. Quantification of wrinkles and their variability was conducted and their (lack of) correlation with the NCF material's macro-scale shear and bending behaviour was analysed. Meso-scale material and process variabilities were also measured and quantified. This was followed by a sensitivity analysis on their effect on wrinkling variability and highlighted the prime importance of tow-orientation and fabric pre-shear. This work deepens the understanding of NCF wrinkling behaviour and open the door to the development of more accurate modelling tools and digital twin systems that can help robustly eliminate wrinkles.
期刊介绍:
Composites Part B: Engineering is a journal that publishes impactful research of high quality on composite materials. This research is supported by fundamental mechanics and materials science and engineering approaches. The targeted research can cover a wide range of length scales, ranging from nano to micro and meso, and even to the full product and structure level. The journal specifically focuses on engineering applications that involve high performance composites. These applications can range from low volume and high cost to high volume and low cost composite development.
The main goal of the journal is to provide a platform for the prompt publication of original and high quality research. The emphasis is on design, development, modeling, validation, and manufacturing of engineering details and concepts. The journal welcomes both basic research papers and proposals for review articles. Authors are encouraged to address challenges across various application areas. These areas include, but are not limited to, aerospace, automotive, and other surface transportation. The journal also covers energy-related applications, with a focus on renewable energy. Other application areas include infrastructure, off-shore and maritime projects, health care technology, and recreational products.