Saisai Yuan , Yiming Chen , Xijuan Wang , Degui Zhao , Tengyang Gao , Caiyun Wei , Chuanxiang Chen , Yang Yang , Wenjing Hong
{"title":"Decouple the intermolecular interaction by encapsulating an insulating sheath","authors":"Saisai Yuan , Yiming Chen , Xijuan Wang , Degui Zhao , Tengyang Gao , Caiyun Wei , Chuanxiang Chen , Yang Yang , Wenjing Hong","doi":"10.1016/j.cclet.2025.110816","DOIUrl":null,"url":null,"abstract":"<div><div>Single-molecule junctions are building blocks for constructing molecular devices. However, intermolecular interactions like winding bring additional interference among the surrounding molecules, which inhibits the intrinsic coherent transport through single-molecule junctions. Here, we employed a nanocavity (dimethoxypillar [5] arene, DMP[5]), which is analogous to electric cables, to confine the conformation of flexible chains (1,8-diaminooctane, DAO) <em>via</em> host-guest interaction. Single-molecule conductance measurements indicate that the conductance of DAO encapsulated with DMP[5] is as high as that of pure DAO, as reproduced by theoretical simulations. Intriguingly, the molecular lengths of the DAO encapsulated with DMP[5] increase from 1.13 nm to 1.46 nm compared with the pure DAO, indicating that DMP[5] keeps DAO upright-standing <em>via</em> the confinement effect. This work provides a new strategy to decouple the intermolecular interaction by employing an insulating sheath, enabling the high-density integration of single-molecule devices.</div></div>","PeriodicalId":10088,"journal":{"name":"Chinese Chemical Letters","volume":"36 6","pages":"Article 110816"},"PeriodicalIF":9.4000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Chemical Letters","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1001841725000038","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Single-molecule junctions are building blocks for constructing molecular devices. However, intermolecular interactions like winding bring additional interference among the surrounding molecules, which inhibits the intrinsic coherent transport through single-molecule junctions. Here, we employed a nanocavity (dimethoxypillar [5] arene, DMP[5]), which is analogous to electric cables, to confine the conformation of flexible chains (1,8-diaminooctane, DAO) via host-guest interaction. Single-molecule conductance measurements indicate that the conductance of DAO encapsulated with DMP[5] is as high as that of pure DAO, as reproduced by theoretical simulations. Intriguingly, the molecular lengths of the DAO encapsulated with DMP[5] increase from 1.13 nm to 1.46 nm compared with the pure DAO, indicating that DMP[5] keeps DAO upright-standing via the confinement effect. This work provides a new strategy to decouple the intermolecular interaction by employing an insulating sheath, enabling the high-density integration of single-molecule devices.
期刊介绍:
Chinese Chemical Letters (CCL) (ISSN 1001-8417) was founded in July 1990. The journal publishes preliminary accounts in the whole field of chemistry, including inorganic chemistry, organic chemistry, analytical chemistry, physical chemistry, polymer chemistry, applied chemistry, etc.Chinese Chemical Letters does not accept articles previously published or scheduled to be published. To verify originality, your article may be checked by the originality detection service CrossCheck.