Asymmetrical carbazole-benzonitrile-based TADF emitters designed by alternate donor-acceptor strategy

IF 9.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Zhaoyue Lü , Tiantian Chai , Yichao Jin , Xiao Wang , Ye Zou , Lijiang Zhang , Jiankang Feng , Mengtong Zhang , Shuo Wang , Chichong Lu , Guofan Jin
{"title":"Asymmetrical carbazole-benzonitrile-based TADF emitters designed by alternate donor-acceptor strategy","authors":"Zhaoyue Lü ,&nbsp;Tiantian Chai ,&nbsp;Yichao Jin ,&nbsp;Xiao Wang ,&nbsp;Ye Zou ,&nbsp;Lijiang Zhang ,&nbsp;Jiankang Feng ,&nbsp;Mengtong Zhang ,&nbsp;Shuo Wang ,&nbsp;Chichong Lu ,&nbsp;Guofan Jin","doi":"10.1016/j.cclet.2025.110817","DOIUrl":null,"url":null,"abstract":"<div><div>A pair of asymmetric rigid carbazole-benzonitrile-based emitters were synthesized by strategically alternating donor and acceptor groups along the molecular edges. The spin-flip process is accelerated by both the formation of localized and delocalized charge transfer states due to linearly positioned donors and strong spin-orbital coupling between different excitation feature of the lowest singlet and triplet excited states. This molecular architecture results in a remarkable short delayed lifespan of around 100 ns. The application of the two emitters in organic light-emitting diodes (OLEDs) achieves the highest external quantum efficiencies of 13.0 % for the green emitter and 9.1 % for the sky-blue emitter. Impressively, these devices maintain their high efficiency even at high luminance levels. The sustained efficiency is ascribed to the effective suppression of exciton quenching by substantially shortening delayed lifespan. These findings underscore the practical utility of the molecular design strategy that incorporates alternate donor and acceptor groups at the molecular periphery for shortening delayed fluorescence lifetime, and hold great promise for the development of high-performance OLEDs.</div></div>","PeriodicalId":10088,"journal":{"name":"Chinese Chemical Letters","volume":"36 6","pages":"Article 110817"},"PeriodicalIF":9.4000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Chemical Letters","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S100184172500004X","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A pair of asymmetric rigid carbazole-benzonitrile-based emitters were synthesized by strategically alternating donor and acceptor groups along the molecular edges. The spin-flip process is accelerated by both the formation of localized and delocalized charge transfer states due to linearly positioned donors and strong spin-orbital coupling between different excitation feature of the lowest singlet and triplet excited states. This molecular architecture results in a remarkable short delayed lifespan of around 100 ns. The application of the two emitters in organic light-emitting diodes (OLEDs) achieves the highest external quantum efficiencies of 13.0 % for the green emitter and 9.1 % for the sky-blue emitter. Impressively, these devices maintain their high efficiency even at high luminance levels. The sustained efficiency is ascribed to the effective suppression of exciton quenching by substantially shortening delayed lifespan. These findings underscore the practical utility of the molecular design strategy that incorporates alternate donor and acceptor groups at the molecular periphery for shortening delayed fluorescence lifetime, and hold great promise for the development of high-performance OLEDs.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Chinese Chemical Letters
Chinese Chemical Letters 化学-化学综合
CiteScore
14.10
自引率
15.40%
发文量
8969
审稿时长
1.6 months
期刊介绍: Chinese Chemical Letters (CCL) (ISSN 1001-8417) was founded in July 1990. The journal publishes preliminary accounts in the whole field of chemistry, including inorganic chemistry, organic chemistry, analytical chemistry, physical chemistry, polymer chemistry, applied chemistry, etc.Chinese Chemical Letters does not accept articles previously published or scheduled to be published. To verify originality, your article may be checked by the originality detection service CrossCheck.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信