Error estimation and data fusion of root zone soil moisture products over China based on the three corned hat method

IF 4 1区 地球科学 Q1 GEOGRAPHY, PHYSICAL
Jing Tian, Yongqiang Zhang
{"title":"Error estimation and data fusion of root zone soil moisture products over China based on the three corned hat method","authors":"Jing Tian,&nbsp;Yongqiang Zhang","doi":"10.1016/j.gloplacha.2025.104797","DOIUrl":null,"url":null,"abstract":"<div><div>Root zone soil moisture (RZSM) plays a critical role in numerous ecological and environmental processes and holds significant importance for agriculture, hydrology, and climate studies. Although it can be estimated by hydrology or land surface models, the accuracy of such estimations is often limited. Data fusion offers a promising approach to improving RZSM estimation accuracy, yet few studies have explored this avenue. In our study, we address this gap by providing error estimation and data fusion for five RZSM datasets (ERA5-Land, MERRA2, CFSR, SMAP, GLDAS_NOAH2.1 (NOAH)) using the Three Cornered Hat (TCH) method. We evaluated the performance of the TCH method in assessing RZSM data products and in RZSM merging. Our results demonstrate that the TCH method accurately assesses the performance of RZSM products as validated against in situ measurements. Both in situ-based RMSE and TCH-based uncertainties reveal that MERRA2 and NOAH exhibit the best performance, followed by SMAP, CFSR and ERA5, with uncertainty medians of 0.019, 0.0187, 0.023, 0.021 and 0.028 (m<sup>3</sup>/m<sup>3</sup>), respectively. Comparisons of the accuracy for the TCH merged result and the individual RZSM product indicate that the merged result outperforms each individual product. The percentages of RMSE differences between the TCH merged result and the individual products less than −0.005 are 60.8 %, 62.3 %, 36.8 %, 41.7 %, and 51.2 % for CFSR, ERA5-Land, MERRA2, NOAH, and SMAP, respectively. These are significantly higher than the percentages of RMSE differences greater than 0.005. Given the TCH method's independence from in situ measurements, it is a promising option for RZSM data fusion. Overall, our study underscores the potential of the TCH method in evaluating RZSM products and performing data fusion to enhance RZSM estimation accuracy.</div></div>","PeriodicalId":55089,"journal":{"name":"Global and Planetary Change","volume":"251 ","pages":"Article 104797"},"PeriodicalIF":4.0000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global and Planetary Change","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921818125001067","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Root zone soil moisture (RZSM) plays a critical role in numerous ecological and environmental processes and holds significant importance for agriculture, hydrology, and climate studies. Although it can be estimated by hydrology or land surface models, the accuracy of such estimations is often limited. Data fusion offers a promising approach to improving RZSM estimation accuracy, yet few studies have explored this avenue. In our study, we address this gap by providing error estimation and data fusion for five RZSM datasets (ERA5-Land, MERRA2, CFSR, SMAP, GLDAS_NOAH2.1 (NOAH)) using the Three Cornered Hat (TCH) method. We evaluated the performance of the TCH method in assessing RZSM data products and in RZSM merging. Our results demonstrate that the TCH method accurately assesses the performance of RZSM products as validated against in situ measurements. Both in situ-based RMSE and TCH-based uncertainties reveal that MERRA2 and NOAH exhibit the best performance, followed by SMAP, CFSR and ERA5, with uncertainty medians of 0.019, 0.0187, 0.023, 0.021 and 0.028 (m3/m3), respectively. Comparisons of the accuracy for the TCH merged result and the individual RZSM product indicate that the merged result outperforms each individual product. The percentages of RMSE differences between the TCH merged result and the individual products less than −0.005 are 60.8 %, 62.3 %, 36.8 %, 41.7 %, and 51.2 % for CFSR, ERA5-Land, MERRA2, NOAH, and SMAP, respectively. These are significantly higher than the percentages of RMSE differences greater than 0.005. Given the TCH method's independence from in situ measurements, it is a promising option for RZSM data fusion. Overall, our study underscores the potential of the TCH method in evaluating RZSM products and performing data fusion to enhance RZSM estimation accuracy.
基于三顶玉米帽法的中国根区土壤水分产品误差估计与数据融合
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Global and Planetary Change
Global and Planetary Change 地学天文-地球科学综合
CiteScore
7.40
自引率
10.30%
发文量
226
审稿时长
63 days
期刊介绍: The objective of the journal Global and Planetary Change is to provide a multi-disciplinary overview of the processes taking place in the Earth System and involved in planetary change over time. The journal focuses on records of the past and current state of the earth system, and future scenarios , and their link to global environmental change. Regional or process-oriented studies are welcome if they discuss global implications. Topics include, but are not limited to, changes in the dynamics and composition of the atmosphere, oceans and cryosphere, as well as climate change, sea level variation, observations/modelling of Earth processes from deep to (near-)surface and their coupling, global ecology, biogeography and the resilience/thresholds in ecosystems. Key criteria for the consideration of manuscripts are (a) the relevance for the global scientific community and/or (b) the wider implications for global scale problems, preferably combined with (c) having a significance beyond a single discipline. A clear focus on key processes associated with planetary scale change is strongly encouraged. Manuscripts can be submitted as either research contributions or as a review article. Every effort should be made towards the presentation of research outcomes in an understandable way for a broad readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信