High-entropy electromagnetic functional materials: From electromagnetic genes to materials design

IF 31.6 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Ting-Ting Liu , Lu-Yang Li , Peng Gao , Lin Li , Mao-Sheng Cao
{"title":"High-entropy electromagnetic functional materials: From electromagnetic genes to materials design","authors":"Ting-Ting Liu ,&nbsp;Lu-Yang Li ,&nbsp;Peng Gao ,&nbsp;Lin Li ,&nbsp;Mao-Sheng Cao","doi":"10.1016/j.mser.2025.100982","DOIUrl":null,"url":null,"abstract":"<div><div>The widespread application of electromagnetic (EM) wave technology in fields such as communication, medicine, and national defense has introduced new challenges related to radiation pollution. Developing efficient EM wave absorption materials has become a critical technological frontier for ensuring human health, safety, and sustainable industrial development. High-entropy (HE) materials, due to their diverse chemical composition and excellent compositional regulation ability, exhibit abundant response mechanisms and adjustable loss characteristics, indicating that they will become a transformative force in the field of EM function. Therefore, we summarize the multi-scale integrated assembly design strategy of HE-based EM wave absorption materials, and comprehensively review the latest research progress of HE EM wave absorbing materials, including high entropy ceramics (HEC), high entropy alloys (HEA), and HE composites. Finally, the core challenges in developing HE-based EM functional materials are explored and potential research opportunities are revealed. We hope this review will inspire further scientific exploration, advance innovations and applications of HE materials in the field of EM wave absorption, promote human safety and health, and contribute to the achievement of sustainable development.</div></div>","PeriodicalId":386,"journal":{"name":"Materials Science and Engineering: R: Reports","volume":"164 ","pages":"Article 100982"},"PeriodicalIF":31.6000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: R: Reports","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927796X25000592","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The widespread application of electromagnetic (EM) wave technology in fields such as communication, medicine, and national defense has introduced new challenges related to radiation pollution. Developing efficient EM wave absorption materials has become a critical technological frontier for ensuring human health, safety, and sustainable industrial development. High-entropy (HE) materials, due to their diverse chemical composition and excellent compositional regulation ability, exhibit abundant response mechanisms and adjustable loss characteristics, indicating that they will become a transformative force in the field of EM function. Therefore, we summarize the multi-scale integrated assembly design strategy of HE-based EM wave absorption materials, and comprehensively review the latest research progress of HE EM wave absorbing materials, including high entropy ceramics (HEC), high entropy alloys (HEA), and HE composites. Finally, the core challenges in developing HE-based EM functional materials are explored and potential research opportunities are revealed. We hope this review will inspire further scientific exploration, advance innovations and applications of HE materials in the field of EM wave absorption, promote human safety and health, and contribute to the achievement of sustainable development.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Science and Engineering: R: Reports
Materials Science and Engineering: R: Reports 工程技术-材料科学:综合
CiteScore
60.50
自引率
0.30%
发文量
19
审稿时长
34 days
期刊介绍: Materials Science & Engineering R: Reports is a journal that covers a wide range of topics in the field of materials science and engineering. It publishes both experimental and theoretical research papers, providing background information and critical assessments on various topics. The journal aims to publish high-quality and novel research papers and reviews. The subject areas covered by the journal include Materials Science (General), Electronic Materials, Optical Materials, and Magnetic Materials. In addition to regular issues, the journal also publishes special issues on key themes in the field of materials science, including Energy Materials, Materials for Health, Materials Discovery, Innovation for High Value Manufacturing, and Sustainable Materials development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信