Machine Learning for Early Detection of Hidradenitis Suppurativa: A Feasibility Study Using Medical Insurance Claims Data

Waqar Ali , Jonathan Williams , Betty Xiong , James Zou , Roxana Daneshjou
{"title":"Machine Learning for Early Detection of Hidradenitis Suppurativa: A Feasibility Study Using Medical Insurance Claims Data","authors":"Waqar Ali ,&nbsp;Jonathan Williams ,&nbsp;Betty Xiong ,&nbsp;James Zou ,&nbsp;Roxana Daneshjou","doi":"10.1016/j.xjidi.2025.100362","DOIUrl":null,"url":null,"abstract":"<div><div>Patients with hidradenitis suppurativa (HS) are often misdiagnosed and may wait up to 10 years to receive a diagnosis of HS. This study aimed to predict HS diagnosis prior to actual diagnosis on the basis of previous medical history using models developed with insurance claims data. Three machine learning models were compared with a model using features selected by a dermatologist (clinical baseline model). The study analyzed 5,900,000 United States individuals’ insurance records over 13.5 years. The population included 13,886 patients with HS with at least 1 claim in each of the 2 years prior to their first HS diagnosis and 69,428 control patients with no HS diagnosis. The models aimed to classify HS diagnosis status on the basis of clinical features observed over 2 years. Model performance was assessed by area under the receiver operating characterisitic curve, F1-score, and precision and recall rates. The machine learning models (logistic regression, random forest, and XGBoost) showed a higher area under the receiver operating characterisitic curve than the clinical baseline model (logistic regression = 0.75, random forest = 0.79, XGBoost = 0.80, clinical = 0.71). In the clinical model and the best-performing XGBoost model, the top features associated with diagnosis were patient age at prediction and sex. The XGBoost model top features also included the use of sulfamethoxazole/trimethoprim and clindamycin phosphate and obesity.</div></div>","PeriodicalId":73548,"journal":{"name":"JID innovations : skin science from molecules to population health","volume":"5 3","pages":"Article 100362"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JID innovations : skin science from molecules to population health","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667026725000189","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Patients with hidradenitis suppurativa (HS) are often misdiagnosed and may wait up to 10 years to receive a diagnosis of HS. This study aimed to predict HS diagnosis prior to actual diagnosis on the basis of previous medical history using models developed with insurance claims data. Three machine learning models were compared with a model using features selected by a dermatologist (clinical baseline model). The study analyzed 5,900,000 United States individuals’ insurance records over 13.5 years. The population included 13,886 patients with HS with at least 1 claim in each of the 2 years prior to their first HS diagnosis and 69,428 control patients with no HS diagnosis. The models aimed to classify HS diagnosis status on the basis of clinical features observed over 2 years. Model performance was assessed by area under the receiver operating characterisitic curve, F1-score, and precision and recall rates. The machine learning models (logistic regression, random forest, and XGBoost) showed a higher area under the receiver operating characterisitic curve than the clinical baseline model (logistic regression = 0.75, random forest = 0.79, XGBoost = 0.80, clinical = 0.71). In the clinical model and the best-performing XGBoost model, the top features associated with diagnosis were patient age at prediction and sex. The XGBoost model top features also included the use of sulfamethoxazole/trimethoprim and clindamycin phosphate and obesity.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.00
自引率
0.00%
发文量
0
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信