{"title":"Zeros of a system of diagonal polynomials over finite fields","authors":"Yulu Feng","doi":"10.1016/j.ffa.2025.102623","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> be the finite field of characteristic <em>p</em>, having <span><math><mi>q</mi><mo>=</mo><msup><mrow><mi>p</mi></mrow><mrow><mi>a</mi></mrow></msup></math></span> elements and let <span><math><msubsup><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup></math></span> be the unit group of <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>. Let <span><math><mi>N</mi><mo>(</mo><mi>V</mi><mo>)</mo></math></span> be the number of <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>-rational points of the affine algebraic variety defined by the simultaneous vanishing of the diagonal polynomials <span><math><msub><mrow><mi>f</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi><mn>1</mn></mrow></msub><msubsup><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow><mrow><msub><mrow><mi>d</mi></mrow><mrow><mi>i</mi><mn>1</mn></mrow></msub></mrow></msubsup><mo>+</mo><mo>⋯</mo><mo>+</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi><mi>n</mi></mrow></msub><msubsup><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow><mrow><msub><mrow><mi>d</mi></mrow><mrow><mi>i</mi><mi>n</mi></mrow></msub></mrow></msubsup><mo>+</mo><msub><mrow><mi>c</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>, <span><math><mi>i</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>r</mi></math></span>, where <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi><mi>j</mi></mrow></msub><mo>∈</mo><msubsup><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup></math></span>, <span><math><msub><mrow><mi>c</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>∈</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>i</mi><mi>j</mi></mrow></msub></math></span> is a nonnegative integer for <span><math><mn>1</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>r</mi><mo>,</mo><mn>1</mn><mo>≤</mo><mi>j</mi><mo>≤</mo><mi>n</mi></math></span>. By using properties of Teichmüller representations and the Stickelberger relation applied by Ax and Wan, we show that<span><span><span><math><msub><mrow><mi>ord</mi></mrow><mrow><mi>q</mi></mrow></msub><mi>N</mi><mo>(</mo><mi>V</mi><mo>)</mo><mo>≥</mo><mo>⌈</mo><munderover><mo>∑</mo><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></munderover><mfrac><mrow><mn>1</mn></mrow><mrow><munder><mi>max</mi><mrow><mn>1</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>r</mi></mrow></munder><mo></mo><mo>{</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>i</mi><mi>j</mi></mrow></msub><mo>}</mo></mrow></mfrac><mo>⌉</mo><mo>−</mo><mi>r</mi></math></span></span></span> if <span><math><msub><mrow><mi>max</mi></mrow><mrow><mn>1</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>r</mi></mrow></msub><mo></mo><mo>{</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>i</mi><mi>j</mi></mrow></msub><mo>}</mo><mo>></mo><mn>0</mn></math></span> for all integers <em>j</em> with <span><math><mn>1</mn><mo>≤</mo><mi>j</mi><mo>≤</mo><mi>n</mi></math></span>, this improves Cao's result which announces the same statement under the condition <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>i</mi><mi>j</mi></mrow></msub><mo>></mo><mn>0</mn></math></span> for all integers <span><math><mi>i</mi><mo>,</mo><mi>j</mi></math></span> with <span><math><mn>1</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>r</mi><mo>,</mo><mn>1</mn><mo>≤</mo><mi>j</mi><mo>≤</mo><mi>n</mi></math></span>. For any nonnegative integer <em>m</em>, let <span><math><mi>σ</mi><mo>(</mo><mi>m</mi><mo>)</mo></math></span> be the digital sum of <em>m</em> in base <em>p</em>. Then we set up a <em>p</em>-adic version of the first estimate that<span><span><span><math><msub><mrow><mi>ord</mi></mrow><mrow><mi>p</mi></mrow></msub><mi>N</mi><mo>(</mo><mi>V</mi><mo>)</mo><mo>≥</mo><mo>⌈</mo><mi>a</mi><munderover><mo>∑</mo><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></munderover><mfrac><mrow><mn>1</mn></mrow><mrow><munder><mi>max</mi><mrow><mn>1</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>r</mi></mrow></munder><mo></mo><mo>{</mo><mi>σ</mi><mo>(</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>i</mi><mi>j</mi></mrow></msub><mo>)</mo><mo>}</mo></mrow></mfrac><mo>⌉</mo><mo>−</mo><mi>a</mi><mi>r</mi><mo>,</mo></math></span></span></span> which generalizes Moreno and Castro's result from one diagonal polynomial to a system of diagonal polynomials. This also improves the Ax-Katz-Moreno-Moreno theorem in certain cases. Moreover, we extend the study to a more general variety defined by a system of generalized diagonal polynomials.</div></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"106 ","pages":"Article 102623"},"PeriodicalIF":1.2000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Fields and Their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S107157972500053X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let be the finite field of characteristic p, having elements and let be the unit group of . Let be the number of -rational points of the affine algebraic variety defined by the simultaneous vanishing of the diagonal polynomials , , where , and is a nonnegative integer for . By using properties of Teichmüller representations and the Stickelberger relation applied by Ax and Wan, we show that if for all integers j with , this improves Cao's result which announces the same statement under the condition for all integers with . For any nonnegative integer m, let be the digital sum of m in base p. Then we set up a p-adic version of the first estimate that which generalizes Moreno and Castro's result from one diagonal polynomial to a system of diagonal polynomials. This also improves the Ax-Katz-Moreno-Moreno theorem in certain cases. Moreover, we extend the study to a more general variety defined by a system of generalized diagonal polynomials.
期刊介绍:
Finite Fields and Their Applications is a peer-reviewed technical journal publishing papers in finite field theory as well as in applications of finite fields. As a result of applications in a wide variety of areas, finite fields are increasingly important in several areas of mathematics, including linear and abstract algebra, number theory and algebraic geometry, as well as in computer science, statistics, information theory, and engineering.
For cohesion, and because so many applications rely on various theoretical properties of finite fields, it is essential that there be a core of high-quality papers on theoretical aspects. In addition, since much of the vitality of the area comes from computational problems, the journal publishes papers on computational aspects of finite fields as well as on algorithms and complexity of finite field-related methods.
The journal also publishes papers in various applications including, but not limited to, algebraic coding theory, cryptology, combinatorial design theory, pseudorandom number generation, and linear recurring sequences. There are other areas of application to be included, but the important point is that finite fields play a nontrivial role in the theory, application, or algorithm.