Two-Dimensional Zeolitic Imidazolate Framework Based Optoelectronic Synaptic Transistor

IF 4.6 2区 化学 Q2 CHEMISTRY, PHYSICAL
Ziqi Jia, Wenmin Zhong, Kui Zhou, Wei Zeng, Yan Li, Zihao Feng, Haozhe Xue, Pengfei Zhao, Xue Chen, Hongxiang Wang, Xingke Cai, Shuangmei Xue, Yongbiao Zhai, Ziyu Lv, Yan Yan, Meng Zhang, Xueqing Yang, Guanglong Ding*, Su-Ting Han, Chi-Ching Kuo* and Ye Zhou*, 
{"title":"Two-Dimensional Zeolitic Imidazolate Framework Based Optoelectronic Synaptic Transistor","authors":"Ziqi Jia,&nbsp;Wenmin Zhong,&nbsp;Kui Zhou,&nbsp;Wei Zeng,&nbsp;Yan Li,&nbsp;Zihao Feng,&nbsp;Haozhe Xue,&nbsp;Pengfei Zhao,&nbsp;Xue Chen,&nbsp;Hongxiang Wang,&nbsp;Xingke Cai,&nbsp;Shuangmei Xue,&nbsp;Yongbiao Zhai,&nbsp;Ziyu Lv,&nbsp;Yan Yan,&nbsp;Meng Zhang,&nbsp;Xueqing Yang,&nbsp;Guanglong Ding*,&nbsp;Su-Ting Han,&nbsp;Chi-Ching Kuo* and Ye Zhou*,&nbsp;","doi":"10.1021/acs.jpclett.5c0000910.1021/acs.jpclett.5c00009","DOIUrl":null,"url":null,"abstract":"<p >Neuromorphic computing systems that integrate memory and computation offer a solution to the limitations of traditional von Neumann architectures. Optoelectronic synaptic transistors, responding to both optical and electrical signals, enable multifunctional operation with low power consumption. However, challenges such as short data retention and low processing efficiency remain. This study presents an optoelectronic synaptic transistor utilizing two-dimensional (2D) MoS<sub>2</sub>, 2D zeolitic imidazolate framework (ZIF) Zn<sub>2</sub>(bim)<sub>4</sub>, and gold (Au) nanoparticles (NPs) as semiconductor, tunneling layer, and floating gate materials, respectively. By adjusting the tunneling layer thickness, the charge-blocking capacity of Zn<sub>2</sub>(bim)<sub>4</sub> is modulated, improving long-term data retention. The optoelectronic properties of MoS<sub>2</sub> and the charge-trapping ability of Au NPs enable the transistor to mimic synaptic behaviors such as postsynaptic current (PSC), long-term potentiation (LTP), and transition from short-term to long-term memory (STM-LTM). This device can also be integrated into an artificial neural network (ANN) for smart healthcare applications, achieving 88.1% accuracy in electrocardiogram classification through optoelectronic dual-mode stimulation.</p>","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"16 12","pages":"3012–3021 3012–3021"},"PeriodicalIF":4.6000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpclett.5c00009","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Neuromorphic computing systems that integrate memory and computation offer a solution to the limitations of traditional von Neumann architectures. Optoelectronic synaptic transistors, responding to both optical and electrical signals, enable multifunctional operation with low power consumption. However, challenges such as short data retention and low processing efficiency remain. This study presents an optoelectronic synaptic transistor utilizing two-dimensional (2D) MoS2, 2D zeolitic imidazolate framework (ZIF) Zn2(bim)4, and gold (Au) nanoparticles (NPs) as semiconductor, tunneling layer, and floating gate materials, respectively. By adjusting the tunneling layer thickness, the charge-blocking capacity of Zn2(bim)4 is modulated, improving long-term data retention. The optoelectronic properties of MoS2 and the charge-trapping ability of Au NPs enable the transistor to mimic synaptic behaviors such as postsynaptic current (PSC), long-term potentiation (LTP), and transition from short-term to long-term memory (STM-LTM). This device can also be integrated into an artificial neural network (ANN) for smart healthcare applications, achieving 88.1% accuracy in electrocardiogram classification through optoelectronic dual-mode stimulation.

Abstract Image

基于二维沸石咪唑酸盐框架的光电突触晶体管
集成了记忆和计算的神经形态计算系统为传统冯·诺伊曼架构的局限性提供了一个解决方案。光电突触晶体管,响应光和电信号,实现低功耗的多功能操作。然而,数据保留时间短、处理效率低等挑战依然存在。本研究提出了一种光电突触晶体管,利用二维(2D) MoS2、二维沸石咪唑盐框架(ZIF) Zn2(bim)4和金(Au)纳米颗粒(NPs)分别作为半导体、隧道层和浮栅材料。通过调整隧道层厚度,可以调制Zn2(bim)4的电荷阻挡能力,提高数据的长期保留能力。MoS2的光电特性和Au NPs的电荷捕获能力使晶体管能够模拟突触行为,如突触后电流(PSC)、长期增强(LTP)和从短期到长期记忆的过渡(STM-LTM)。该设备还可以集成到人工神经网络(ANN)中,用于智能医疗应用,通过光电双模刺激,心电图分类准确率达到88.1%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
The Journal of Physical Chemistry Letters
The Journal of Physical Chemistry Letters CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
9.60
自引率
7.00%
发文量
1519
审稿时长
1.6 months
期刊介绍: The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信