Xiao Xue, Chengmin Xie, Guozhi Qian, Minjing Shang*, Min Qiu, Rongkun Jiang, Mohsin Pasha, Zihao Zhong, Zhijun Wang, Shu Liu, Hua Zhang and Yuanhai Su*,
{"title":"Two-Step Synthesis of a Dolutegravir Intermediate DTG-6 in a Microfluidized Bed Cascade System: Route Design and Kinetic Study","authors":"Xiao Xue, Chengmin Xie, Guozhi Qian, Minjing Shang*, Min Qiu, Rongkun Jiang, Mohsin Pasha, Zihao Zhong, Zhijun Wang, Shu Liu, Hua Zhang and Yuanhai Su*, ","doi":"10.1021/cbe.4c0013910.1021/cbe.4c00139","DOIUrl":null,"url":null,"abstract":"<p >In the existing two-step method for the preparation of DTG-6 (i.e., an important intermediate of the anti-HIV drug Dolutegravir (DTG)), a strong base is required to neutralize the homogeneous strong acid catalyst of the first step to make the reaction solution weakly acidic for the DTG-5 cyclization in the second step. The DTG-6 yield in the two-step synthesis is affected by the reaction of the strong base with the carboxyl group on the generated intermediate DTG-5. In this article, a solid acid catalyst, titanium cation-exchanged montmorillonite (Ti<sup>4+</sup>-mont), was used in the microfluidized bed to catalyze the conversion of DTG-4 to DTG-5. DTG-5 can be directly cyclized with (<i>R</i>)-3-aminobutanol (RABO) to form DTG-6 without the introduction of a strong base into the reaction solution. After the parametric screening on the flow rate, solid acid type, temperature, residence time, and solvent type, the DTG-6 yield increased from 90% (in our previous work) to 95% in the microfluidized bed cascade system. Due to the easy separation of heterogeneous catalyst, the utilization of a microfluidized bed not only simplified operations, but also improved synthetic efficiency. Moreover, the kinetics of the cyclization of unstable intermediate DTG-5 with RABO was investigated and verified by means of experimental data.</p>","PeriodicalId":100230,"journal":{"name":"Chem & Bio Engineering","volume":"2 3","pages":"182–191 182–191"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/cbe.4c00139","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem & Bio Engineering","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/cbe.4c00139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In the existing two-step method for the preparation of DTG-6 (i.e., an important intermediate of the anti-HIV drug Dolutegravir (DTG)), a strong base is required to neutralize the homogeneous strong acid catalyst of the first step to make the reaction solution weakly acidic for the DTG-5 cyclization in the second step. The DTG-6 yield in the two-step synthesis is affected by the reaction of the strong base with the carboxyl group on the generated intermediate DTG-5. In this article, a solid acid catalyst, titanium cation-exchanged montmorillonite (Ti4+-mont), was used in the microfluidized bed to catalyze the conversion of DTG-4 to DTG-5. DTG-5 can be directly cyclized with (R)-3-aminobutanol (RABO) to form DTG-6 without the introduction of a strong base into the reaction solution. After the parametric screening on the flow rate, solid acid type, temperature, residence time, and solvent type, the DTG-6 yield increased from 90% (in our previous work) to 95% in the microfluidized bed cascade system. Due to the easy separation of heterogeneous catalyst, the utilization of a microfluidized bed not only simplified operations, but also improved synthetic efficiency. Moreover, the kinetics of the cyclization of unstable intermediate DTG-5 with RABO was investigated and verified by means of experimental data.