Valorization of Lignocellulosic Biomass for Photocatalytic Applications: Development of Activated Carbon-TiO2 Composites

Mariana Rodrigues Meirelles, Amanda Soares Giroto, Karolina Furukawa and Maraísa Gonçalves*, 
{"title":"Valorization of Lignocellulosic Biomass for Photocatalytic Applications: Development of Activated Carbon-TiO2 Composites","authors":"Mariana Rodrigues Meirelles,&nbsp;Amanda Soares Giroto,&nbsp;Karolina Furukawa and Maraísa Gonçalves*,&nbsp;","doi":"10.1021/acssusresmgt.4c0051210.1021/acssusresmgt.4c00512","DOIUrl":null,"url":null,"abstract":"<p >This study investigates the utilization of lignocellulosic biomass residues to prepare activated carbon (AC) with high porosity for use as a support for TiO<sub>2</sub> photocatalysts aimed at degrading organic contaminants. Residues like coffee husk, sugarcane bagasse, and coffee grounds were converted into porous AC supports via chemical activation with zinc chloride. TiO<sub>2</sub> was synthesized using the peroxide gel method to be supported on these ACs, which were extensively characterized. The ACs exhibited high specific surface areas (up to 1600 m<sup>2</sup> g<sup>–1</sup>) and pore volumes that were suitable for supporting TiO<sub>2</sub>. TiO<sub>2</sub> maintained its anatase phase after synthesis and dispersion on the ACs, with 10 ± 2 nm crystallite sizes. SEM and TEM analyses revealed good dispersion of TiO<sub>2</sub> nanoparticles on the AC surface. Photocatalytic assays showed that the AC-TiO<sub>2</sub> composites efficiently degraded N-acetyl-para-aminophenol (APAP) under ultraviolet (UV) light, surpassing pure TiO<sub>2</sub>. Composites with higher TiO<sub>2</sub> content (85%) exhibited the best performance on the photodegradation, degrading 74% to 82% of APAP over 5 h. Pseudo-first-order kinetics indicated enhanced degradation rates for the composites compared to TiO<sub>2</sub>. Furthermore, the AC-TiO<sub>2</sub> materials showed sustained photocatalytic activity over multiple cycles, confirming their stability and practical potential. XRD analysis verified the stability of the composites after six reuse cycles. This study demonstrates the feasibility of producing high-performance AC-TiO<sub>2</sub> composites from lignocellulosic residues, offering an economical and sustainable approach to environmental remediation technologies. The properties of ACs as TiO<sub>2</sub> supports enhance photocatalytic efficiency, promising significant applications in environmental cleanup and sustainable development.</p><p >This study explores the conversion of lignocellulosic residues into porous activated carbon for supporting TiO<sub>2</sub>. The prepared composites demonstrate efficiency of pollutants removal, offering a sustainable approach to environmental remediation.</p>","PeriodicalId":100015,"journal":{"name":"ACS Sustainable Resource Management","volume":"2 3","pages":"524–535 524–535"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acssusresmgt.4c00512","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sustainable Resource Management","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acssusresmgt.4c00512","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the utilization of lignocellulosic biomass residues to prepare activated carbon (AC) with high porosity for use as a support for TiO2 photocatalysts aimed at degrading organic contaminants. Residues like coffee husk, sugarcane bagasse, and coffee grounds were converted into porous AC supports via chemical activation with zinc chloride. TiO2 was synthesized using the peroxide gel method to be supported on these ACs, which were extensively characterized. The ACs exhibited high specific surface areas (up to 1600 m2 g–1) and pore volumes that were suitable for supporting TiO2. TiO2 maintained its anatase phase after synthesis and dispersion on the ACs, with 10 ± 2 nm crystallite sizes. SEM and TEM analyses revealed good dispersion of TiO2 nanoparticles on the AC surface. Photocatalytic assays showed that the AC-TiO2 composites efficiently degraded N-acetyl-para-aminophenol (APAP) under ultraviolet (UV) light, surpassing pure TiO2. Composites with higher TiO2 content (85%) exhibited the best performance on the photodegradation, degrading 74% to 82% of APAP over 5 h. Pseudo-first-order kinetics indicated enhanced degradation rates for the composites compared to TiO2. Furthermore, the AC-TiO2 materials showed sustained photocatalytic activity over multiple cycles, confirming their stability and practical potential. XRD analysis verified the stability of the composites after six reuse cycles. This study demonstrates the feasibility of producing high-performance AC-TiO2 composites from lignocellulosic residues, offering an economical and sustainable approach to environmental remediation technologies. The properties of ACs as TiO2 supports enhance photocatalytic efficiency, promising significant applications in environmental cleanup and sustainable development.

This study explores the conversion of lignocellulosic residues into porous activated carbon for supporting TiO2. The prepared composites demonstrate efficiency of pollutants removal, offering a sustainable approach to environmental remediation.

木质纤维素生物质的光催化增值:活性炭- tio2复合材料的开发
本研究探讨了利用木质纤维素生物质残渣制备高孔隙度活性炭(AC),作为降解有机污染物的TiO2光催化剂的载体。咖啡壳、甘蔗渣和咖啡渣等残留物通过氯化锌的化学活化转化为多孔AC载体。TiO2采用过氧化物凝胶法制备,并被广泛表征。活性炭具有较高的比表面积(高达1600 m2 g-1)和适合负载TiO2的孔体积。TiO2合成后在活性炭上分散后仍保持锐钛矿相,晶粒尺寸为10±2 nm。SEM和TEM分析表明TiO2纳米粒子在交流材料表面具有良好的分散性。光催化实验表明,AC-TiO2复合材料在紫外光下对n -乙酰基对氨基酚(APAP)的降解效率高于纯TiO2。TiO2含量较高(85%)的复合材料表现出最佳的光降解性能,在5小时内可降解74%至82%的APAP。伪一级动力学表明,与TiO2相比,复合材料的降解率更高。此外,AC-TiO2材料在多个循环中表现出持续的光催化活性,证实了其稳定性和应用潜力。XRD分析验证了复合材料经过6次重复使用后的稳定性。本研究证明了利用木质纤维素残渣生产高性能AC-TiO2复合材料的可行性,为环境修复技术提供了一种经济、可持续的途径。活性炭作为TiO2载体的特性提高了光催化效率,在环境净化和可持续发展方面具有重要的应用前景。本研究探讨了木质纤维素残基转化为多孔活性炭以负载TiO2的方法。所制备的复合材料显示出污染物去除的效率,为环境修复提供了一种可持续的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信