Fatemeh Mostafavi, Mingyuan Hong, Riley B. Dawkins, Jannatul Ferdous, Ian Baum, Rui-Bo Jin, Roberto de J. León-Montiel, Chenglong You, Omar S. Magaña-Loaiza
{"title":"Multiphoton quantum imaging using natural light","authors":"Fatemeh Mostafavi, Mingyuan Hong, Riley B. Dawkins, Jannatul Ferdous, Ian Baum, Rui-Bo Jin, Roberto de J. León-Montiel, Chenglong You, Omar S. Magaña-Loaiza","doi":"10.1063/5.0234062","DOIUrl":null,"url":null,"abstract":"It is thought that schemes for quantum imaging are fragile against realistic environments in which the background noise is often stronger than the nonclassical signal of the imaging photons. Unfortunately, it is unfeasible to produce brighter quantum light sources to alleviate this problem. Here, we overcome this paradigmatic limitation by developing a quantum imaging scheme that relies on the use of natural sources of light. This is achieved by performing conditional detection on the photon number of the thermal light field scattered by a remote object. Specifically, the conditional measurements in our scheme enable us to extract quantum features of the detected thermal photons to produce quantum images with improved signal-to-noise ratios. This technique shows an exponential enhancement in the contrast of quantum images. This measurement scheme enables the possibility of producing images from the vacuum fluctuations of the light field. This is experimentally demonstrated through the implementation of a single-pixel camera with photon-number-resolving capabilities. As such, we believe that our scheme opens a new paradigm in the field of quantum imaging. It also unveils the potential of combining natural light sources with nonclassical detection schemes for the development of robust quantum technologies.","PeriodicalId":8200,"journal":{"name":"Applied physics reviews","volume":"61 1","pages":""},"PeriodicalIF":11.9000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied physics reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0234062","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
It is thought that schemes for quantum imaging are fragile against realistic environments in which the background noise is often stronger than the nonclassical signal of the imaging photons. Unfortunately, it is unfeasible to produce brighter quantum light sources to alleviate this problem. Here, we overcome this paradigmatic limitation by developing a quantum imaging scheme that relies on the use of natural sources of light. This is achieved by performing conditional detection on the photon number of the thermal light field scattered by a remote object. Specifically, the conditional measurements in our scheme enable us to extract quantum features of the detected thermal photons to produce quantum images with improved signal-to-noise ratios. This technique shows an exponential enhancement in the contrast of quantum images. This measurement scheme enables the possibility of producing images from the vacuum fluctuations of the light field. This is experimentally demonstrated through the implementation of a single-pixel camera with photon-number-resolving capabilities. As such, we believe that our scheme opens a new paradigm in the field of quantum imaging. It also unveils the potential of combining natural light sources with nonclassical detection schemes for the development of robust quantum technologies.
期刊介绍:
Applied Physics Reviews (APR) is a journal featuring articles on critical topics in experimental or theoretical research in applied physics and applications of physics to other scientific and engineering branches. The publication includes two main types of articles:
Original Research: These articles report on high-quality, novel research studies that are of significant interest to the applied physics community.
Reviews: Review articles in APR can either be authoritative and comprehensive assessments of established areas of applied physics or short, timely reviews of recent advances in established fields or emerging areas of applied physics.