Min Yu, Guangji Zhang, Kai Li, Feiying Tang, Liqiang Wang, You-Nian Liu
{"title":"Ni nanoparticles decorated Ni–N–C catalyst: Dual-site synergy for enhanced catalytic hydrogenation","authors":"Min Yu, Guangji Zhang, Kai Li, Feiying Tang, Liqiang Wang, You-Nian Liu","doi":"10.1002/aic.18830","DOIUrl":null,"url":null,"abstract":"It is highly desired but still challenging to engineer single-atom catalysts featuring an M–N–C configuration for efficient catalytic hydrogenation. Herein, Ni nanoparticles (Ni NPs) modified Ni–N–C (termed as Ni<sub>1+NPs</sub>/NSPC) were fabricated to demonstrate the feasibility of enhancing the catalytic hydrogenation performance of M–N–C by introducing metallic NPs sites. Ni<sub>NPs</sub> sites and Ni<sub>1</sub> sites displayed a synergistic effect: Ni<sub>NPs</sub> promote the dissociation of H<sub>2</sub> in a homolytic manner with a lower barrier energy than the heterolytic one that occurred on Ni<sub>1</sub> sites, whereas Ni<sub>1</sub> could burden the activation of substrates. The active H atoms generated at Ni<sub>NPs</sub> migrate to Ni<sub>1</sub> sites to complete hydrogenation. Consequently, Ni<sub>1+NPs</sub>/NSPC catalysts were empowered with excellent hydrogenation performance; they can be applied to a series of hydrogenation substrates (e.g., nitro compounds, furfural, quinine, and cyanophenyl) affording high conversion (95.1%–99.9%) and selectivity (96.8%–99.9%).","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"21 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIChE Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/aic.18830","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
It is highly desired but still challenging to engineer single-atom catalysts featuring an M–N–C configuration for efficient catalytic hydrogenation. Herein, Ni nanoparticles (Ni NPs) modified Ni–N–C (termed as Ni1+NPs/NSPC) were fabricated to demonstrate the feasibility of enhancing the catalytic hydrogenation performance of M–N–C by introducing metallic NPs sites. NiNPs sites and Ni1 sites displayed a synergistic effect: NiNPs promote the dissociation of H2 in a homolytic manner with a lower barrier energy than the heterolytic one that occurred on Ni1 sites, whereas Ni1 could burden the activation of substrates. The active H atoms generated at NiNPs migrate to Ni1 sites to complete hydrogenation. Consequently, Ni1+NPs/NSPC catalysts were empowered with excellent hydrogenation performance; they can be applied to a series of hydrogenation substrates (e.g., nitro compounds, furfural, quinine, and cyanophenyl) affording high conversion (95.1%–99.9%) and selectivity (96.8%–99.9%).
期刊介绍:
The AIChE Journal is the premier research monthly in chemical engineering and related fields. This peer-reviewed and broad-based journal reports on the most important and latest technological advances in core areas of chemical engineering as well as in other relevant engineering disciplines. To keep abreast with the progressive outlook of the profession, the Journal has been expanding the scope of its editorial contents to include such fast developing areas as biotechnology, electrochemical engineering, and environmental engineering.
The AIChE Journal is indeed the global communications vehicle for the world-renowned researchers to exchange top-notch research findings with one another. Subscribing to the AIChE Journal is like having immediate access to nine topical journals in the field.
Articles are categorized according to the following topical areas:
Biomolecular Engineering, Bioengineering, Biochemicals, Biofuels, and Food
Inorganic Materials: Synthesis and Processing
Particle Technology and Fluidization
Process Systems Engineering
Reaction Engineering, Kinetics and Catalysis
Separations: Materials, Devices and Processes
Soft Materials: Synthesis, Processing and Products
Thermodynamics and Molecular-Scale Phenomena
Transport Phenomena and Fluid Mechanics.