Jingyan Zhang, Zhongxin Song, Xiaozhang Yao, Yi Guan, Ziwei Huo, Ning Chen, Lei Zhang, Xueliang Sun
{"title":"Precisely constructing asymmetric triple atoms for highly efficient electrocatalysis","authors":"Jingyan Zhang, Zhongxin Song, Xiaozhang Yao, Yi Guan, Ziwei Huo, Ning Chen, Lei Zhang, Xueliang Sun","doi":"10.1016/j.chempr.2025.102498","DOIUrl":null,"url":null,"abstract":"Triple-atom catalysts (TACs) are promising for surpassing the activity of normal single-atom and dual-atom catalysts. However, the rational design and construction of TACs remain challenging. Herein, we developed asymmetric Pt-Ru-Co triple atoms (TAs) by using selective atomic layer deposition technology. Compared with the corresponding single-atom and dual-atom counterparts, they demonstrate superior electrocatalytic performance in both the hydrogen evolution reaction (HER) and hydrogen oxidation reaction (HOR). <em>Operando</em> X-ray absorption spectroscopy (XAS) revealed that the heterogeneous atoms within Pt-Ru-Co TAs have strong interactions and serve as active centers, synergistically accelerating reaction kinetics. Additionally, theoretical calculations indicate that introducing Co atoms effectively optimizes the <em>d</em> orbital electronic structure of Pt and Ru, endowing enhanced catalytic activity of the Pt-Ru-Co TAs. This work presents asymmetric Pt-Ru-Co TAs with excellent electrocatalytic activity and provides new insights into the catalytic mechanism of TACs.","PeriodicalId":268,"journal":{"name":"Chem","volume":"24 4 1","pages":""},"PeriodicalIF":19.1000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.chempr.2025.102498","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Triple-atom catalysts (TACs) are promising for surpassing the activity of normal single-atom and dual-atom catalysts. However, the rational design and construction of TACs remain challenging. Herein, we developed asymmetric Pt-Ru-Co triple atoms (TAs) by using selective atomic layer deposition technology. Compared with the corresponding single-atom and dual-atom counterparts, they demonstrate superior electrocatalytic performance in both the hydrogen evolution reaction (HER) and hydrogen oxidation reaction (HOR). Operando X-ray absorption spectroscopy (XAS) revealed that the heterogeneous atoms within Pt-Ru-Co TAs have strong interactions and serve as active centers, synergistically accelerating reaction kinetics. Additionally, theoretical calculations indicate that introducing Co atoms effectively optimizes the d orbital electronic structure of Pt and Ru, endowing enhanced catalytic activity of the Pt-Ru-Co TAs. This work presents asymmetric Pt-Ru-Co TAs with excellent electrocatalytic activity and provides new insights into the catalytic mechanism of TACs.
三原子催化剂(TAC)有望超越普通单原子和双原子催化剂的活性。然而,三原子催化剂的合理设计和构建仍具有挑战性。在此,我们利用选择性原子层沉积技术开发了不对称铂-铜-钴三原子(TAs)。与相应的单原子和双原子相比,它们在氢气进化反应(HER)和氢气氧化反应(HOR)中都表现出卓越的电催化性能。操作性 X 射线吸收光谱(XAS)显示,铂-铜-钴 TAs 中的异质原子具有很强的相互作用,可作为活性中心,协同加速反应动力学。此外,理论计算表明,引入 Co 原子可有效优化铂和钌的 d 轨道电子结构,从而增强 Pt-Ru-Co TAs 的催化活性。这项工作提出了具有优异电催化活性的不对称铂-钌-钴 TAs,并为 TACs 的催化机理提供了新的见解。
期刊介绍:
Chem, affiliated with Cell as its sister journal, serves as a platform for groundbreaking research and illustrates how fundamental inquiries in chemistry and its related fields can contribute to addressing future global challenges. It was established in 2016, and is currently edited by Robert Eagling.