Adaptive Ultra-Low Resilience Woven Triboelectric Nanogenerators for High-Performance Wearable Energy Harvesting and Motion Sensing

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2025-03-26 DOI:10.1002/smll.202501116
Mei Yi So, Bingang Xu
{"title":"Adaptive Ultra-Low Resilience Woven Triboelectric Nanogenerators for High-Performance Wearable Energy Harvesting and Motion Sensing","authors":"Mei Yi So, Bingang Xu","doi":"10.1002/smll.202501116","DOIUrl":null,"url":null,"abstract":"As electronic devices become increasingly compact and functional, the demand for renewable energy sources and self-powered systems has risen dramatically. Triboelectric nanogenerators (TENGs) provide a sustainable energy solution, converting mechanical energy into electrical energy. This study introduces an advanced woven double-cloth triboelectric nanogenerator (WDC-TENG) for energy harvesting and sensing applications. Composed of BaTiO₃-doped polydimethylsiloxane (PDMS) and copper-nickel alloy fabric (CNF), the WDC-TENG features a double-cloth woven structure that minimizes deformation during the contact-separation process, making it ideal for compact applications such as insoles. Its modular design allows each weft yarn to function as an independent energy-generating unit, which can operate individually or in combination, significantly enhancing flexibility and scalability. The WDC-TENG achieves a high-power density of 15 W m<sup>2</sup>, generating a current output of 0.7 mA. Furthermore, its structure ensures excellent mechanical durability, enabling long-term wearing. Beyond energy harvesting, the WDC-TENG exhibits multifunctionality in reliably powering microelectronic devices as insole, while as carpets, it not only harvests energy from foot but also acts as a sensor for real-time wireless monitoring of pedestrian density and walking paths. The WDC-TENG's low deformation, durability, and versatility position it as a promising solution for advancing wearable technology and intelligent environments.","PeriodicalId":228,"journal":{"name":"Small","volume":"21 1","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202501116","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

As electronic devices become increasingly compact and functional, the demand for renewable energy sources and self-powered systems has risen dramatically. Triboelectric nanogenerators (TENGs) provide a sustainable energy solution, converting mechanical energy into electrical energy. This study introduces an advanced woven double-cloth triboelectric nanogenerator (WDC-TENG) for energy harvesting and sensing applications. Composed of BaTiO₃-doped polydimethylsiloxane (PDMS) and copper-nickel alloy fabric (CNF), the WDC-TENG features a double-cloth woven structure that minimizes deformation during the contact-separation process, making it ideal for compact applications such as insoles. Its modular design allows each weft yarn to function as an independent energy-generating unit, which can operate individually or in combination, significantly enhancing flexibility and scalability. The WDC-TENG achieves a high-power density of 15 W m2, generating a current output of 0.7 mA. Furthermore, its structure ensures excellent mechanical durability, enabling long-term wearing. Beyond energy harvesting, the WDC-TENG exhibits multifunctionality in reliably powering microelectronic devices as insole, while as carpets, it not only harvests energy from foot but also acts as a sensor for real-time wireless monitoring of pedestrian density and walking paths. The WDC-TENG's low deformation, durability, and versatility position it as a promising solution for advancing wearable technology and intelligent environments.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信