Closed-Loop Recyclable Polyhexahydrotriazine Aerogels Derived From PET Waste

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2025-03-26 DOI:10.1002/smll.202502885
Christos Pantazidis, Chang-lin Wang, Keita Saito, Yi-Ru Chen, Željko Tomović
{"title":"Closed-Loop Recyclable Polyhexahydrotriazine Aerogels Derived From PET Waste","authors":"Christos Pantazidis, Chang-lin Wang, Keita Saito, Yi-Ru Chen, Željko Tomović","doi":"10.1002/smll.202502885","DOIUrl":null,"url":null,"abstract":"The global plastic waste crisis stems from unsustainable design and a linear economy that leads to massive environmental pollution. Polyethylene terephthalate (PET), widely used in packaging and textiles is one of the primary contributors to this issue. While mechanical recycling of PET results in degraded material quality, chemical recycling offers a promising alternative, enabling the transformation of PET waste into valuable monomers and precursors. In this study, postconsumer PET waste is chemically upcycled into bifunctional aromatic amine that can serve as an effective building block for polyhexahydrotriazine (PHT) aerogels. Additionally, terephthalamide moieties incorporated into the molecular design, enhance the formed network by hydrogen bonding. The resulting PHT aerogels exhibit low density, high mechanical robustness, and outstanding thermal insulation properties. More importantly, these novel PHT aerogels are designed for recyclability, enabling depolymerization under aqueous acidic conditions and efficient monomer recovery in high yield and purity. The recycled monomer can then be immediately reused to produce new aerogels with nearly identical material properties. This work highlights the potential of upcycling plastic waste into sustainable thermally superinsulating materials designed for a circular economy.","PeriodicalId":228,"journal":{"name":"Small","volume":"29 1","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202502885","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The global plastic waste crisis stems from unsustainable design and a linear economy that leads to massive environmental pollution. Polyethylene terephthalate (PET), widely used in packaging and textiles is one of the primary contributors to this issue. While mechanical recycling of PET results in degraded material quality, chemical recycling offers a promising alternative, enabling the transformation of PET waste into valuable monomers and precursors. In this study, postconsumer PET waste is chemically upcycled into bifunctional aromatic amine that can serve as an effective building block for polyhexahydrotriazine (PHT) aerogels. Additionally, terephthalamide moieties incorporated into the molecular design, enhance the formed network by hydrogen bonding. The resulting PHT aerogels exhibit low density, high mechanical robustness, and outstanding thermal insulation properties. More importantly, these novel PHT aerogels are designed for recyclability, enabling depolymerization under aqueous acidic conditions and efficient monomer recovery in high yield and purity. The recycled monomer can then be immediately reused to produce new aerogels with nearly identical material properties. This work highlights the potential of upcycling plastic waste into sustainable thermally superinsulating materials designed for a circular economy.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信