Bioelectrochemistry promotes microbial activity and accelerates wastewater methanogenesis in anaerobic digestion under combined exposure to antibiotics and microplastics
{"title":"Bioelectrochemistry promotes microbial activity and accelerates wastewater methanogenesis in anaerobic digestion under combined exposure to antibiotics and microplastics","authors":"Hui Wang, Qixing Zhou","doi":"10.1016/j.jhazmat.2025.138053","DOIUrl":null,"url":null,"abstract":"<div><div>Antibiotics and microplastics (MPs), as pervasive environmental pollutants, coexist in wastewater and pose significant threats to public health. Bioelectrochemical systems (BES), which integrate microbial metabolism and electrochemical redox reactions, exhibit considerable potential for treating recalcitrant pollutants and recovering bioenergy from wastewater. This study represents the first comprehensive investigation into the application of BES for treating wastewater contaminated with multiple antibiotics and MPs, focusing on the synergistic effects of composite pollutants rather than isolated toxicological impacts. Compared to conventional anaerobic digestion, BES demonstrated enhanced wastewater treatment efficiency (14.39 %) and methane recovery (14.32 %). Under pollutant exposure and electrical stimulation, significant alterations in microbial cell viability and enzyme activities were observed. While pollutants reduced microbial species abundance, BES increased microbial diversity. The microbial community was predominantly composed of methanogens (<em>Methanothrix</em>), whereas fermentative bacteria (<em>Proteiniphilum</em>) dominated the cathode compartment. Although the addition of antibiotics did not significantly alter the overall abundance of antibiotic class and antibiotic resistance genes (ARGs), the cathode exhibited the potential to reduce their abundance. Functional gene abundance related to methane synthesis (EC:6.2.1.1) increased at the anode, while the cathode exacerbated inhibitory effects, primarily mediating acetate generation (EC:1.2.4.1, EC:2.3.1.12). These findings provide novel insights into the application of BES for treating co-contaminated wastewater, highlighting its capacity to mitigate emerging environmental challenges.</div></div>","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"492 ","pages":"Article 138053"},"PeriodicalIF":12.2000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304389425009689","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Antibiotics and microplastics (MPs), as pervasive environmental pollutants, coexist in wastewater and pose significant threats to public health. Bioelectrochemical systems (BES), which integrate microbial metabolism and electrochemical redox reactions, exhibit considerable potential for treating recalcitrant pollutants and recovering bioenergy from wastewater. This study represents the first comprehensive investigation into the application of BES for treating wastewater contaminated with multiple antibiotics and MPs, focusing on the synergistic effects of composite pollutants rather than isolated toxicological impacts. Compared to conventional anaerobic digestion, BES demonstrated enhanced wastewater treatment efficiency (14.39 %) and methane recovery (14.32 %). Under pollutant exposure and electrical stimulation, significant alterations in microbial cell viability and enzyme activities were observed. While pollutants reduced microbial species abundance, BES increased microbial diversity. The microbial community was predominantly composed of methanogens (Methanothrix), whereas fermentative bacteria (Proteiniphilum) dominated the cathode compartment. Although the addition of antibiotics did not significantly alter the overall abundance of antibiotic class and antibiotic resistance genes (ARGs), the cathode exhibited the potential to reduce their abundance. Functional gene abundance related to methane synthesis (EC:6.2.1.1) increased at the anode, while the cathode exacerbated inhibitory effects, primarily mediating acetate generation (EC:1.2.4.1, EC:2.3.1.12). These findings provide novel insights into the application of BES for treating co-contaminated wastewater, highlighting its capacity to mitigate emerging environmental challenges.
期刊介绍:
The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.