Kamila Fuchs, Tomasz Janek, Mateusz Karpl, Anna Władyczyn, Jolanta Ejfler, Łukasz John
{"title":"Enhanced Antimicrobial Efficacy of Sulfones and Sulfonamides via Cage-Like Silsesquioxane Incorporation","authors":"Kamila Fuchs, Tomasz Janek, Mateusz Karpl, Anna Władyczyn, Jolanta Ejfler, Łukasz John","doi":"10.1021/acs.inorgchem.4c05156","DOIUrl":null,"url":null,"abstract":"This work introduces a novel class of hybrid antimicrobial agents by integrating sulfone and sulfonamide functionalities with polyhedral oligomeric silsesquioxanes (POSSs). By employing efficient synthetic protocols, we have successfully prepared both sulfone (ethylvinylsulfone-POSS and phenylethylsulfone-POSS) and sulfonamide (benzenesulfonamide-POSS, <i>p</i>-toluenesulfonamide-POSS, 3-fluorobenzenesulfonamide-POSS, and 2-naphthalenesulfonamide-POSS) derivatives with high yields (73–90%). All derivatives were examined using Fourier transform infrared spectroscopy, multinuclear (<sup>1</sup>H, <sup>13</sup>C, <sup>19</sup>F, and <sup>29</sup>Si) NMR spectroscopy, MALDI-ToF MS spectrometry, and elemental analysis. Additionally, the crystal structure of the <i>p</i>-toluenesulfonamide-POSS hybrid was revealed. The unique cage-like POSS structure not only imparts enhanced thermal and chemical stability, a common feature of silsesquioxane-based hybrids, but also boosts the lipophilic character of these compounds, thereby facilitating their interaction with microbial membranes. This interaction, likely resulting in membrane disruption and cell lysis, translates into potent antimicrobial activity (against <i>Escherichia coli</i>, <i>Pseudomonas aeruginosa</i>, <i>Enterococcus hirae</i>, <i>Staphylococcus aureus</i>, and <i>Candida albicans</i>)─especially against Gram-positive bacteria─at remarkably low minimum inhibitory concentrations in the range from 125 to 3000 μM. In turn, <i>E. hirae</i> and <i>S. aureus</i> were more susceptible compared to Gram-negative bacteria and <i>C. albicans</i>. The strategic incorporation of POSSs into these sulfur-based moieties represents a significant breakthrough, opening new avenues for the development of advanced antimicrobial coatings and therapeutic agents in the fight against antibiotic resistance.","PeriodicalId":40,"journal":{"name":"Inorganic Chemistry","volume":"71 1","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.inorgchem.4c05156","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
This work introduces a novel class of hybrid antimicrobial agents by integrating sulfone and sulfonamide functionalities with polyhedral oligomeric silsesquioxanes (POSSs). By employing efficient synthetic protocols, we have successfully prepared both sulfone (ethylvinylsulfone-POSS and phenylethylsulfone-POSS) and sulfonamide (benzenesulfonamide-POSS, p-toluenesulfonamide-POSS, 3-fluorobenzenesulfonamide-POSS, and 2-naphthalenesulfonamide-POSS) derivatives with high yields (73–90%). All derivatives were examined using Fourier transform infrared spectroscopy, multinuclear (1H, 13C, 19F, and 29Si) NMR spectroscopy, MALDI-ToF MS spectrometry, and elemental analysis. Additionally, the crystal structure of the p-toluenesulfonamide-POSS hybrid was revealed. The unique cage-like POSS structure not only imparts enhanced thermal and chemical stability, a common feature of silsesquioxane-based hybrids, but also boosts the lipophilic character of these compounds, thereby facilitating their interaction with microbial membranes. This interaction, likely resulting in membrane disruption and cell lysis, translates into potent antimicrobial activity (against Escherichia coli, Pseudomonas aeruginosa, Enterococcus hirae, Staphylococcus aureus, and Candida albicans)─especially against Gram-positive bacteria─at remarkably low minimum inhibitory concentrations in the range from 125 to 3000 μM. In turn, E. hirae and S. aureus were more susceptible compared to Gram-negative bacteria and C. albicans. The strategic incorporation of POSSs into these sulfur-based moieties represents a significant breakthrough, opening new avenues for the development of advanced antimicrobial coatings and therapeutic agents in the fight against antibiotic resistance.
期刊介绍:
Inorganic Chemistry publishes fundamental studies in all phases of inorganic chemistry. Coverage includes experimental and theoretical reports on quantitative studies of structure and thermodynamics, kinetics, mechanisms of inorganic reactions, bioinorganic chemistry, and relevant aspects of organometallic chemistry, solid-state phenomena, and chemical bonding theory. Emphasis is placed on the synthesis, structure, thermodynamics, reactivity, spectroscopy, and bonding properties of significant new and known compounds.