Oxidative Dehydrogenation of Ethane Combined with CO2 Splitting via Chemical Looping on In2O3 Modified with Ni–Cu Alloy

IF 11.3 1区 化学 Q1 CHEMISTRY, PHYSICAL
Kosuke Watanabe, Takuma Higo, Koki Saegusa, Sakura Matsumoto, Hiroshi Sampei, Yuki Isono, Akira Shimojuku, Hideki Furusawa, Yasushi Sekine
{"title":"Oxidative Dehydrogenation of Ethane Combined with CO2 Splitting via Chemical Looping on In2O3 Modified with Ni–Cu Alloy","authors":"Kosuke Watanabe, Takuma Higo, Koki Saegusa, Sakura Matsumoto, Hiroshi Sampei, Yuki Isono, Akira Shimojuku, Hideki Furusawa, Yasushi Sekine","doi":"10.1021/acscatal.4c07737","DOIUrl":null,"url":null,"abstract":"Modified In<sub>2</sub>O<sub>3</sub> has the potential to be a better oxygen storage material due to its readily reducible surface and abundant bulk lattice oxygen released with a marked valence change from In<sup>3+</sup> to In<sup>0</sup>. This work describes that In<sub>2</sub>O<sub>3</sub> modified with a Ni–Cu alloy supports a chemical looping system consisting of oxidative dehydrogenation of ethane and CO<sub>2</sub> splitting at the low temperature of 873 K with a large oxygen capacity (&gt;4 wt %). This reaction system is achieved through dynamic changes between Ni–Cu binary alloy and Ni–Cu–In ternary alloy associated with the redox of indium species. Meticulous material screening, characterization, and theoretical calculations have revealed that the Ni–Cu alloy promotes the redox of In<sub>2</sub>O<sub>3</sub> by activating ethane and by incorporating reduced indium species.","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":"7 1","pages":""},"PeriodicalIF":11.3000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acscatal.4c07737","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Modified In2O3 has the potential to be a better oxygen storage material due to its readily reducible surface and abundant bulk lattice oxygen released with a marked valence change from In3+ to In0. This work describes that In2O3 modified with a Ni–Cu alloy supports a chemical looping system consisting of oxidative dehydrogenation of ethane and CO2 splitting at the low temperature of 873 K with a large oxygen capacity (>4 wt %). This reaction system is achieved through dynamic changes between Ni–Cu binary alloy and Ni–Cu–In ternary alloy associated with the redox of indium species. Meticulous material screening, characterization, and theoretical calculations have revealed that the Ni–Cu alloy promotes the redox of In2O3 by activating ethane and by incorporating reduced indium species.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Catalysis
ACS Catalysis CHEMISTRY, PHYSICAL-
CiteScore
20.80
自引率
6.20%
发文量
1253
审稿时长
1.5 months
期刊介绍: ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels. The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信