Salinity levels, trends and drivers of surface water salinization across China's river basins

IF 11.4 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
Lin Gao , Ze Yuan , Xiaoteng Mao , Ting Ma
{"title":"Salinity levels, trends and drivers of surface water salinization across China's river basins","authors":"Lin Gao ,&nbsp;Ze Yuan ,&nbsp;Xiaoteng Mao ,&nbsp;Ting Ma","doi":"10.1016/j.watres.2025.123556","DOIUrl":null,"url":null,"abstract":"<div><div>The salinization of freshwater resources constitutes an increasingly global challenge, exacerbated by climate change and human activities. Despite its growing significance, comprehensive assessments of salinity dynamics and the roles of natural and anthropogenic factors remain scarce. This study investigates surface water salinity levels and their long-term (2003–2022) and seasonal trends across 1356 sampling sites in ten major Chinese river basins. Our results reveal that &gt;20 % of the sites exhibit relatively high long-term average salinity levels compared to the irrigation water threshold, primary in arid or semi-arid regions experiencing intensified human activities. Nearly 20 % of low-salinity sites exhibit significant trends towards increased salinity, primarily in humid region. Southern basins, such as the Pearl River and Yangtze River, generally have relatively low salinity but demonstrate upward trends, whereas northern basins, like the Yellow River and Huai River, experience moderate to high salinity levels with more rapid increases. Winter salinity levels and their rate of increase surpass those of other seasons. Anthropogenic drivers, particularly population density and agricultural water use, emerge as key contributors to rising salinity, in conjunction with hydroclimatic variables. Furthermore, seasonal salinity trends underscore the critical role of agricultural water use during summer and autumn months. These findings emphasize the necessity to address the compounded pressures of climate variability and human activities, which are increasingly threatening surface water quality through rising salinity and extreme weather events.</div></div>","PeriodicalId":443,"journal":{"name":"Water Research","volume":"281 ","pages":"Article 123556"},"PeriodicalIF":11.4000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0043135425004695","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

The salinization of freshwater resources constitutes an increasingly global challenge, exacerbated by climate change and human activities. Despite its growing significance, comprehensive assessments of salinity dynamics and the roles of natural and anthropogenic factors remain scarce. This study investigates surface water salinity levels and their long-term (2003–2022) and seasonal trends across 1356 sampling sites in ten major Chinese river basins. Our results reveal that >20 % of the sites exhibit relatively high long-term average salinity levels compared to the irrigation water threshold, primary in arid or semi-arid regions experiencing intensified human activities. Nearly 20 % of low-salinity sites exhibit significant trends towards increased salinity, primarily in humid region. Southern basins, such as the Pearl River and Yangtze River, generally have relatively low salinity but demonstrate upward trends, whereas northern basins, like the Yellow River and Huai River, experience moderate to high salinity levels with more rapid increases. Winter salinity levels and their rate of increase surpass those of other seasons. Anthropogenic drivers, particularly population density and agricultural water use, emerge as key contributors to rising salinity, in conjunction with hydroclimatic variables. Furthermore, seasonal salinity trends underscore the critical role of agricultural water use during summer and autumn months. These findings emphasize the necessity to address the compounded pressures of climate variability and human activities, which are increasingly threatening surface water quality through rising salinity and extreme weather events.

Abstract Image

Abstract Image

淡水资源盐碱化是一个日益严重的全球性挑战,气候变化和人类活动加剧了这一问题。尽管盐度的重要性与日俱增,但对盐度动态以及自然和人为因素作用的全面评估仍然很少。本研究调查了中国十大流域 1356 个采样点的地表水盐度水平及其长期(2003-2022 年)和季节变化趋势。研究结果表明,与灌溉水阈值相比,超过 20% 的采样点表现出相对较高的长期平均盐度水平,这些采样点主要位于人类活动加剧的干旱或半干旱地区。近 20% 的低盐度站点呈现出显著的盐度上升趋势,主要集中在潮湿地区。南方流域,如珠江和长江,盐度一般相对较低,但呈上升趋势;而北方流域,如黄河和淮河,盐度处于中等至高水平,且上升较快。冬季的盐度水平及其上升速度超过其他季节。人为因素,特别是人口密度和农业用水,与水文气候变量一起成为盐度上升的主要因素。此外,季节性盐度变化趋势突出表明了夏秋季节农业用水的关键作用。这些发现强调了应对气候多变性和人类活动的复合压力的必要性,这些压力正通过盐度上升和极端天气事件日益威胁着地表水的质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Water Research
Water Research 环境科学-工程:环境
CiteScore
20.80
自引率
9.40%
发文量
1307
审稿时长
38 days
期刊介绍: Water Research, along with its open access companion journal Water Research X, serves as a platform for publishing original research papers covering various aspects of the science and technology related to the anthropogenic water cycle, water quality, and its management worldwide. The audience targeted by the journal comprises biologists, chemical engineers, chemists, civil engineers, environmental engineers, limnologists, and microbiologists. The scope of the journal include: •Treatment processes for water and wastewaters (municipal, agricultural, industrial, and on-site treatment), including resource recovery and residuals management; •Urban hydrology including sewer systems, stormwater management, and green infrastructure; •Drinking water treatment and distribution; •Potable and non-potable water reuse; •Sanitation, public health, and risk assessment; •Anaerobic digestion, solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions; •Contaminants (chemical, microbial, anthropogenic particles such as nanoparticles or microplastics) and related water quality sensing, monitoring, fate, and assessment; •Anthropogenic impacts on inland, tidal, coastal and urban waters, focusing on surface and ground waters, and point and non-point sources of pollution; •Environmental restoration, linked to surface water, groundwater and groundwater remediation; •Analysis of the interfaces between sediments and water, and between water and atmosphere, focusing specifically on anthropogenic impacts; •Mathematical modelling, systems analysis, machine learning, and beneficial use of big data related to the anthropogenic water cycle; •Socio-economic, policy, and regulations studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信