Kenia Barrantes-Jiménez, Franck Lejzerowicz, Tam Tran, Melany Calderón-Osorno, Luis Rivera-Montero, César Rodríguez-Sánchez, Odd-Gunnar Wikmark, Alexander Eiler, Hans-Peter Grossart, María Arias-Andrés, Keilor Rojas-Jiménez
{"title":"Anthropogenic imprint on riverine plasmidome diversity and proliferation of antibiotic resistance genes following pollution and urbanization","authors":"Kenia Barrantes-Jiménez, Franck Lejzerowicz, Tam Tran, Melany Calderón-Osorno, Luis Rivera-Montero, César Rodríguez-Sánchez, Odd-Gunnar Wikmark, Alexander Eiler, Hans-Peter Grossart, María Arias-Andrés, Keilor Rojas-Jiménez","doi":"10.1016/j.watres.2025.123553","DOIUrl":null,"url":null,"abstract":"Plasmids are key determinants in microbial ecology and evolution, facilitating the dissemination of adaptive traits and antibiotic resistance genes (ARGs). Although the molecular mechanisms governing plasmid replication, maintenance, and transfer have been extensively studied, the specific impacts of urbanization-induced pollution on plasmid ecology, diversity, and associated ARGs in tropical regions remain underexplored. This study investigates these dynamics in a tropical aquatic ecosystem, providing novel insights into how pollution shapes plasmid composition and function. In contrast to the observed decrease in chromosomal diversity, we demonstrate that pollution associated with urbanization increases the diversity and taxonomic composition of plasmids within a bacterial community (plasmidome). We analyzed eighteen water and sediment metagenomes, capturing a gradient of pollution and ARG contamination along a tropical urban river. Plasmid and chromosomal diversity profiles were found to be anti-correlated. Plasmid species enrichment along the pollution gradient led to significant compositional differences in water samples, where differentially abundant species suggest plasmid maintenance within specific taxonomic classes. Additionally, the diversity and abundance of ARGs related to the plasmidome increased concomitantly with the intensity of fecal and chemical pollution. These findings highlight the critical need for targeted plasmidome studies to better understand plasmids' environmental spread, as their dynamics are independent of chromosomal patterns. This research is crucial for understanding the consequences of bacterial evolution, particularly in the context of environmental and public health.","PeriodicalId":443,"journal":{"name":"Water Research","volume":"21 1","pages":""},"PeriodicalIF":11.4000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.watres.2025.123553","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Plasmids are key determinants in microbial ecology and evolution, facilitating the dissemination of adaptive traits and antibiotic resistance genes (ARGs). Although the molecular mechanisms governing plasmid replication, maintenance, and transfer have been extensively studied, the specific impacts of urbanization-induced pollution on plasmid ecology, diversity, and associated ARGs in tropical regions remain underexplored. This study investigates these dynamics in a tropical aquatic ecosystem, providing novel insights into how pollution shapes plasmid composition and function. In contrast to the observed decrease in chromosomal diversity, we demonstrate that pollution associated with urbanization increases the diversity and taxonomic composition of plasmids within a bacterial community (plasmidome). We analyzed eighteen water and sediment metagenomes, capturing a gradient of pollution and ARG contamination along a tropical urban river. Plasmid and chromosomal diversity profiles were found to be anti-correlated. Plasmid species enrichment along the pollution gradient led to significant compositional differences in water samples, where differentially abundant species suggest plasmid maintenance within specific taxonomic classes. Additionally, the diversity and abundance of ARGs related to the plasmidome increased concomitantly with the intensity of fecal and chemical pollution. These findings highlight the critical need for targeted plasmidome studies to better understand plasmids' environmental spread, as their dynamics are independent of chromosomal patterns. This research is crucial for understanding the consequences of bacterial evolution, particularly in the context of environmental and public health.
期刊介绍:
Water Research, along with its open access companion journal Water Research X, serves as a platform for publishing original research papers covering various aspects of the science and technology related to the anthropogenic water cycle, water quality, and its management worldwide. The audience targeted by the journal comprises biologists, chemical engineers, chemists, civil engineers, environmental engineers, limnologists, and microbiologists. The scope of the journal include:
•Treatment processes for water and wastewaters (municipal, agricultural, industrial, and on-site treatment), including resource recovery and residuals management;
•Urban hydrology including sewer systems, stormwater management, and green infrastructure;
•Drinking water treatment and distribution;
•Potable and non-potable water reuse;
•Sanitation, public health, and risk assessment;
•Anaerobic digestion, solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions;
•Contaminants (chemical, microbial, anthropogenic particles such as nanoparticles or microplastics) and related water quality sensing, monitoring, fate, and assessment;
•Anthropogenic impacts on inland, tidal, coastal and urban waters, focusing on surface and ground waters, and point and non-point sources of pollution;
•Environmental restoration, linked to surface water, groundwater and groundwater remediation;
•Analysis of the interfaces between sediments and water, and between water and atmosphere, focusing specifically on anthropogenic impacts;
•Mathematical modelling, systems analysis, machine learning, and beneficial use of big data related to the anthropogenic water cycle;
•Socio-economic, policy, and regulations studies.