Deciphering the inhibitory mechanisms of polystyrene microplastics on thermophilic methanogens from the insights of microbial metabolite profiling and metagenomic analyses
Xuejiao Qiao , Xin Kong , Honglin Zhou , Xiaojun Fan , Jin Yuan , Yifeng Zhang
{"title":"Deciphering the inhibitory mechanisms of polystyrene microplastics on thermophilic methanogens from the insights of microbial metabolite profiling and metagenomic analyses","authors":"Xuejiao Qiao , Xin Kong , Honglin Zhou , Xiaojun Fan , Jin Yuan , Yifeng Zhang","doi":"10.1016/j.jhazmat.2025.138054","DOIUrl":null,"url":null,"abstract":"<div><div>Due to the utilization of food packaging bags, a substantial amount of polystyrene microplastics (PS MPs) are introduced into the food waste (FW) treatment system during the pre-treatment process, potentially impacting the subsequent biochemical treatment system. In order to investigate the mechanism by which PS MPs affect anaerobic methanogenesis metabolism in thermophilic condition, this study analyzed the characteristics of methanogenesis in thermophilic anaerobic digestion (AD) of FW under different concentrations of PS MPs (100 μm, 10–200 mg/L). The results revealed a negative correlation between PS MPs concentration and methane (CH<sub>4</sub>) yield from FW. When the concentration of PS MPs reached 200 mg/L, CH<sub>4</sub> yield decreased by 47.8 %. Further mechanistic investigations revealed that while the presence of PS MPs at lower concentrations could alleviate its adverse impact on methanogenesis by enhancing EPS content, the accumulation of reactive oxygen species (ROS) persisted with increasing PS MPs concentration, thereby inhibiting the activities of key enzymes involved in solubilization and acidification metabolisms (e.g., acetate kinase and F420). Metagenomics analysis indicated that the presence of PS MPs down-regulate abundance of genes for quorum sensing and CH<sub>4</sub> metabolism pathways. These findings not only unveil potential detrimental effects of PS MPs on AD systems but also provide novel insights into comprehending and controlling the impact of MPs pollution on environmental preservation and energy recovery processes.</div></div>","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"492 ","pages":"Article 138054"},"PeriodicalIF":12.2000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304389425009690","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Due to the utilization of food packaging bags, a substantial amount of polystyrene microplastics (PS MPs) are introduced into the food waste (FW) treatment system during the pre-treatment process, potentially impacting the subsequent biochemical treatment system. In order to investigate the mechanism by which PS MPs affect anaerobic methanogenesis metabolism in thermophilic condition, this study analyzed the characteristics of methanogenesis in thermophilic anaerobic digestion (AD) of FW under different concentrations of PS MPs (100 μm, 10–200 mg/L). The results revealed a negative correlation between PS MPs concentration and methane (CH4) yield from FW. When the concentration of PS MPs reached 200 mg/L, CH4 yield decreased by 47.8 %. Further mechanistic investigations revealed that while the presence of PS MPs at lower concentrations could alleviate its adverse impact on methanogenesis by enhancing EPS content, the accumulation of reactive oxygen species (ROS) persisted with increasing PS MPs concentration, thereby inhibiting the activities of key enzymes involved in solubilization and acidification metabolisms (e.g., acetate kinase and F420). Metagenomics analysis indicated that the presence of PS MPs down-regulate abundance of genes for quorum sensing and CH4 metabolism pathways. These findings not only unveil potential detrimental effects of PS MPs on AD systems but also provide novel insights into comprehending and controlling the impact of MPs pollution on environmental preservation and energy recovery processes.
期刊介绍:
The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.