A Leakage-Proof Wrapped Cooler with Daytime Radiative Cooling and Efficient Thermal-Shock Resistance for Outdoor Electronics Thermal Management

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Qingyuan Du, Meng Yang, Haoyang Sun, Maoning Li, Jing Zhao, Dandan Li, Dazhi Sun
{"title":"A Leakage-Proof Wrapped Cooler with Daytime Radiative Cooling and Efficient Thermal-Shock Resistance for Outdoor Electronics Thermal Management","authors":"Qingyuan Du, Meng Yang, Haoyang Sun, Maoning Li, Jing Zhao, Dandan Li, Dazhi Sun","doi":"10.1002/adfm.202500131","DOIUrl":null,"url":null,"abstract":"Outdoor electronics are simultaneously subject to constant solar radiation and instantaneous thermal shock, thus urgently requiring effective thermal management. However, commonly adopted radiative cooling has an issue of low cooling power and phase change temperature control technology suffers from materials leakage, which cannot meet the increasing demands for outdoor electronics. To address these problems, a leakage-proof wrapped cooler that integrates radiative cooling and latent heat storage is proposed to achieve sub-ambient cooling and efficient thermal-shock resistance. The wrapped cooler is designed by directly wrapping paraffin wax (PW) phase change material (PCM) within a hexagonal boron nitride/polydimethylsiloxane (h-BN/PDMS) coating, possessing leakage-proof property during force and thermal shock. The wrapped cooler can achieve an average sub-ambient temperature drop of 4.8 °C under direct sunlight. Moreover, a maximum temperature drop of 35.3 °C can be achieved for the heater covered with the wrapped cooler when experiencing 2000 W m<sup>−2</sup> thermal shock, mainly due to the temperature-pinning effect of PCM and the high thermal conductivity of h-BN/PDMS coating. The wrapped cooler that integrates radiative cooling with latent heat storage provides an effective way for protecting outdoor electronics from solar radiation and thermal-shock damage, thereby advancing passive thermal management technologies toward practical applications.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"91 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202500131","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Outdoor electronics are simultaneously subject to constant solar radiation and instantaneous thermal shock, thus urgently requiring effective thermal management. However, commonly adopted radiative cooling has an issue of low cooling power and phase change temperature control technology suffers from materials leakage, which cannot meet the increasing demands for outdoor electronics. To address these problems, a leakage-proof wrapped cooler that integrates radiative cooling and latent heat storage is proposed to achieve sub-ambient cooling and efficient thermal-shock resistance. The wrapped cooler is designed by directly wrapping paraffin wax (PW) phase change material (PCM) within a hexagonal boron nitride/polydimethylsiloxane (h-BN/PDMS) coating, possessing leakage-proof property during force and thermal shock. The wrapped cooler can achieve an average sub-ambient temperature drop of 4.8 °C under direct sunlight. Moreover, a maximum temperature drop of 35.3 °C can be achieved for the heater covered with the wrapped cooler when experiencing 2000 W m−2 thermal shock, mainly due to the temperature-pinning effect of PCM and the high thermal conductivity of h-BN/PDMS coating. The wrapped cooler that integrates radiative cooling with latent heat storage provides an effective way for protecting outdoor electronics from solar radiation and thermal-shock damage, thereby advancing passive thermal management technologies toward practical applications.

Abstract Image

用于户外电子设备热管理的具有日间辐射冷却和高效抗热震性能的防漏包裹式冷却器
户外电子设备同时受到持续太阳辐射和瞬时热冲击的影响,因此迫切需要有效的热管理。然而,普遍采用的辐射制冷存在制冷功率低的问题,相变温控技术存在材料泄漏的问题,无法满足户外电子产品日益增长的需求。针对这些问题,我们提出了一种集辐射冷却和潜热存储于一体的防泄漏包裹式冷却器,以实现亚环境冷却和高效抗热震性。这种包裹式冷却器是通过在六方氮化硼/聚二甲基硅氧烷(h-BN/PDMS)涂层中直接包裹石蜡(PW)相变材料(PCM)而设计的,在受力和热冲击时具有防漏特性。在阳光直射下,包裹的冷却器可实现平均 4.8°C 的亚环境温度下降。此外,主要由于 PCM 的温度锁定效应和 h-BN/PDMS 涂层的高导热性,包裹冷却器的加热器在经受 2000 W m-2 热冲击时的最大温降可达 35.3 ℃。这种集辐射冷却和潜热存储于一体的包裹式冷却器为保护户外电子设备免受太阳辐射和热冲击的损害提供了一种有效的方法,从而推动了被动热管理技术的实际应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信