Zhuolei Jiao, Taosha Gao, Xiaofei Wang, Ao Wang, Yawen Ma, Li Feng, Le Gao, Lingfeng Gou, Wen Zhang, Nasim Biglari, Emma E. Boxer, Lukas Steuernagel, Xiaojing Ding, Zixian Yu, Mingjuan Li, Mengtong Gao, Mingkun Hao, Hua Zhou, Xuanzi Cao, Shuaishuai Li, Tao Jiang, Jiamei Qi, Xueyan Jia, Zhao Feng, Biyu Ren, Yu Chen, Xiaoxue Shi, Dan Wang, Xinran Wang, Luyao Han, Yikai Liang, Liuqin Qian, Chenxi Jin, Jiawen Huang, Wei Deng, Congcong Wang, E Li, Yue Hu, Zi Tao, Humingzhu Li, Xiang Yu, Min Xu, Hung-Chun Chang, Yifeng Zhang, Huatai Xu, Jun Yan, Anan Li, Qingming Luo, Ron Stoop, Scott M. Sternson, Jens C. Brüning, David J. Anderson, Mu-ming Poo, Yidi Sun, Shengjing Xu, Hui Gong, Yan-Gang Sun, Xiaohong Xu
{"title":"Projectome-based characterization of hypothalamic peptidergic neurons in male mice","authors":"Zhuolei Jiao, Taosha Gao, Xiaofei Wang, Ao Wang, Yawen Ma, Li Feng, Le Gao, Lingfeng Gou, Wen Zhang, Nasim Biglari, Emma E. Boxer, Lukas Steuernagel, Xiaojing Ding, Zixian Yu, Mingjuan Li, Mengtong Gao, Mingkun Hao, Hua Zhou, Xuanzi Cao, Shuaishuai Li, Tao Jiang, Jiamei Qi, Xueyan Jia, Zhao Feng, Biyu Ren, Yu Chen, Xiaoxue Shi, Dan Wang, Xinran Wang, Luyao Han, Yikai Liang, Liuqin Qian, Chenxi Jin, Jiawen Huang, Wei Deng, Congcong Wang, E Li, Yue Hu, Zi Tao, Humingzhu Li, Xiang Yu, Min Xu, Hung-Chun Chang, Yifeng Zhang, Huatai Xu, Jun Yan, Anan Li, Qingming Luo, Ron Stoop, Scott M. Sternson, Jens C. Brüning, David J. Anderson, Mu-ming Poo, Yidi Sun, Shengjing Xu, Hui Gong, Yan-Gang Sun, Xiaohong Xu","doi":"10.1038/s41593-025-01919-0","DOIUrl":null,"url":null,"abstract":"<p>The hypothalamus coordinately regulates physiological homeostasis and innate behaviors, yet the detailed arrangement of hypothalamic axons remains unclear. Here we mapped the whole-brain projections of over 7,000 hypothalamic neurons expressing distinct neuropeptides in male mice, identifying 2 main classes and 31 types using single-neuron projectome analysis. These classes/types exhibited regionally biased soma distribution and specific neuropeptide enrichment. Notably, many projectome types extended long-range axon collaterals to distinct brain regions, allowing single axons to co-regulate multiple targets. We uncovered topographic organization of certain peptidergic axons at specific targets, along with diverse single-neuron projectome patterns in <i>Orexin</i>, <i>Agrp</i> and <i>Pomc</i> populations. Furthermore, hypothalamic peptidergic neurons showed correlated innervation of subdomains in the periaqueductal gray and organized into modular subnetworks within the hypothalamus, providing a structural basis for coordinated outputs. This dataset highlights the complexity of hypothalamic axonal projections and lays a foundation for future investigation of the circuit mechanisms underlying hypothalamic functions.</p>","PeriodicalId":19076,"journal":{"name":"Nature neuroscience","volume":"183 1","pages":""},"PeriodicalIF":21.2000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41593-025-01919-0","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The hypothalamus coordinately regulates physiological homeostasis and innate behaviors, yet the detailed arrangement of hypothalamic axons remains unclear. Here we mapped the whole-brain projections of over 7,000 hypothalamic neurons expressing distinct neuropeptides in male mice, identifying 2 main classes and 31 types using single-neuron projectome analysis. These classes/types exhibited regionally biased soma distribution and specific neuropeptide enrichment. Notably, many projectome types extended long-range axon collaterals to distinct brain regions, allowing single axons to co-regulate multiple targets. We uncovered topographic organization of certain peptidergic axons at specific targets, along with diverse single-neuron projectome patterns in Orexin, Agrp and Pomc populations. Furthermore, hypothalamic peptidergic neurons showed correlated innervation of subdomains in the periaqueductal gray and organized into modular subnetworks within the hypothalamus, providing a structural basis for coordinated outputs. This dataset highlights the complexity of hypothalamic axonal projections and lays a foundation for future investigation of the circuit mechanisms underlying hypothalamic functions.
期刊介绍:
Nature Neuroscience, a multidisciplinary journal, publishes papers of the utmost quality and significance across all realms of neuroscience. The editors welcome contributions spanning molecular, cellular, systems, and cognitive neuroscience, along with psychophysics, computational modeling, and nervous system disorders. While no area is off-limits, studies offering fundamental insights into nervous system function receive priority.
The journal offers high visibility to both readers and authors, fostering interdisciplinary communication and accessibility to a broad audience. It maintains high standards of copy editing and production, rigorous peer review, rapid publication, and operates independently from academic societies and other vested interests.
In addition to primary research, Nature Neuroscience features news and views, reviews, editorials, commentaries, perspectives, book reviews, and correspondence, aiming to serve as the voice of the global neuroscience community.