FluoroMatch IM: An Interactive Software for PFAS Analysis by Ion Mobility Spectrometry

IF 10.8 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
Rachel Smolinski, Jeremy P. Koelmel, Paul Stelben, David Weil, David Godri, David Schiessel, Michael Kummer, Sarah M. Stow, Sheher Mohsin, Lauren Royer, Alan McKenzie-Coe, Thomas Lubinsky, Daniel DeBord, Olivier Chevallier, Emma E. Rennie, Krystal J. Godri Pollitt, Carrie McDonough
{"title":"FluoroMatch IM: An Interactive Software for PFAS Analysis by Ion Mobility Spectrometry","authors":"Rachel Smolinski, Jeremy P. Koelmel, Paul Stelben, David Weil, David Godri, David Schiessel, Michael Kummer, Sarah M. Stow, Sheher Mohsin, Lauren Royer, Alan McKenzie-Coe, Thomas Lubinsky, Daniel DeBord, Olivier Chevallier, Emma E. Rennie, Krystal J. Godri Pollitt, Carrie McDonough","doi":"10.1021/acs.est.4c13846","DOIUrl":null,"url":null,"abstract":"Per- and polyfluoroalkyl substances (PFASs) are often present in complex mixtures at trace levels in environmental samples, posing difficulties for analytical chemists. Ion mobility offers highly replicable identifiers, enabling the use of community-based libraries for PFAS annotation in nontargeted analysis. Currently, limited software exists to leverage the capabilities of liquid chromatography ion mobility high-resolution mass spectrometry (LC-IM-HRMS) for nontargeted analysis. FluoroMatch IM is a free vendor-neutral open-source tool for rapid annotation of PFASs in LC-IM-HRMS datasets. Annotation algorithms include collision cross-section (CCS) matching, formula prediction, homologous series detection, mass defect filtering, and accurate mass matching with a database of 194 PFAS ions that can be continuously expanded by the community. Results from FluoroMatch IM were compared to a targeted approach with a laboratory-prepared mixture of 63 PFASs and real wastewater samples. A nontarget workflow incorporating FluoroMatch IM revealed additional likely PFASs (<i>n</i> = 16) while confirming most targeted annotations (11/12) in wastewater samples. Validation of the standard mix showed a low false negative rate of 5% and a 5% false positive rate for features included in the CCS library, with a 0% false positive rate for features assigned confident scores. This study demonstrates the promise of FluoroMatch IM for streamlining PFAS analysis workflows.","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":"93 1","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.est.4c13846","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Per- and polyfluoroalkyl substances (PFASs) are often present in complex mixtures at trace levels in environmental samples, posing difficulties for analytical chemists. Ion mobility offers highly replicable identifiers, enabling the use of community-based libraries for PFAS annotation in nontargeted analysis. Currently, limited software exists to leverage the capabilities of liquid chromatography ion mobility high-resolution mass spectrometry (LC-IM-HRMS) for nontargeted analysis. FluoroMatch IM is a free vendor-neutral open-source tool for rapid annotation of PFASs in LC-IM-HRMS datasets. Annotation algorithms include collision cross-section (CCS) matching, formula prediction, homologous series detection, mass defect filtering, and accurate mass matching with a database of 194 PFAS ions that can be continuously expanded by the community. Results from FluoroMatch IM were compared to a targeted approach with a laboratory-prepared mixture of 63 PFASs and real wastewater samples. A nontarget workflow incorporating FluoroMatch IM revealed additional likely PFASs (n = 16) while confirming most targeted annotations (11/12) in wastewater samples. Validation of the standard mix showed a low false negative rate of 5% and a 5% false positive rate for features included in the CCS library, with a 0% false positive rate for features assigned confident scores. This study demonstrates the promise of FluoroMatch IM for streamlining PFAS analysis workflows.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
环境科学与技术
环境科学与技术 环境科学-工程:环境
CiteScore
17.50
自引率
9.60%
发文量
12359
审稿时长
2.8 months
期刊介绍: Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences. Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信