A memristor-based unified PUF and TRNG chip with a concealable ability for advanced edge security

IF 11.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Xueqi Li, Bohan Lin, Bin Gao, Yuyao Lu, Siyao Yang, Zhiqiang Su, Ting-Ying Shen, Jianshi Tang, He Qian, Huaqiang Wu
{"title":"A memristor-based unified PUF and TRNG chip with a concealable ability for advanced edge security","authors":"Xueqi Li,&nbsp;Bohan Lin,&nbsp;Bin Gao,&nbsp;Yuyao Lu,&nbsp;Siyao Yang,&nbsp;Zhiqiang Su,&nbsp;Ting-Ying Shen,&nbsp;Jianshi Tang,&nbsp;He Qian,&nbsp;Huaqiang Wu","doi":"10.1126/sciadv.adr0112","DOIUrl":null,"url":null,"abstract":"<div >Security primitives ensure Internet of Things (IoT) security by generating stable keys from physically unclonable functions (PUFs) and unpredictable bitstreams from true random number generators (TRNGs). Considering the restricted resources on IoT motes, a promising design trend is to unify PUF and TRNG by sharing the same entropy source and multiplexing entropy extractor. Here, we report a unified PUF and TRNG chip based on a 28-nanometer embedded memristor with concealable ability. We use the memristor intrinsic FORMING condition variation and read current variation as entropy sources and design a compact on-chip entropy extractor that achieves a high throughput of 41.7 megabits per second with minimal area overhead of 0.291 MF<sup>2</sup>. To prevent PUF data leakage, we developed a concealment method, protecting data when idle and enabling recovery upon demand. Comprehensive testing shows the chip has excellent performance in randomness, reliability, lifetime, and stability, achieving a 3.82-fold throughput improvement over complementary metal-oxide semiconductor–based designs in authentication tasks.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 13","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adr0112","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adr0112","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Security primitives ensure Internet of Things (IoT) security by generating stable keys from physically unclonable functions (PUFs) and unpredictable bitstreams from true random number generators (TRNGs). Considering the restricted resources on IoT motes, a promising design trend is to unify PUF and TRNG by sharing the same entropy source and multiplexing entropy extractor. Here, we report a unified PUF and TRNG chip based on a 28-nanometer embedded memristor with concealable ability. We use the memristor intrinsic FORMING condition variation and read current variation as entropy sources and design a compact on-chip entropy extractor that achieves a high throughput of 41.7 megabits per second with minimal area overhead of 0.291 MF2. To prevent PUF data leakage, we developed a concealment method, protecting data when idle and enabling recovery upon demand. Comprehensive testing shows the chip has excellent performance in randomness, reliability, lifetime, and stability, achieving a 3.82-fold throughput improvement over complementary metal-oxide semiconductor–based designs in authentication tasks.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信