Interfacial Adsorption Layers Based on Amino Acid Analogues to Enable Dual Stabilization toward Long-Life Aqueous Zinc Iodine Batteries

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jinshuo Bu, Peifen Liu, Genyuan Ou, Minghui Ye, Zhipeng Wen, Yufei Zhang, Yongchao Tang, Xiaoqing Liu, Cheng Chao Li
{"title":"Interfacial Adsorption Layers Based on Amino Acid Analogues to Enable Dual Stabilization toward Long-Life Aqueous Zinc Iodine Batteries","authors":"Jinshuo Bu, Peifen Liu, Genyuan Ou, Minghui Ye, Zhipeng Wen, Yufei Zhang, Yongchao Tang, Xiaoqing Liu, Cheng Chao Li","doi":"10.1002/adma.202420221","DOIUrl":null,"url":null,"abstract":"Aqueous zinc–iodine (Zn–I<sub>2</sub>) batteries are promising candidates for large-scale energy storage due to the merits of low cost and high safety. However, their commercial application is hindered by Zn corrosion and polyiodide shuttle at I<sub>2</sub> cathode. Herein, N,N-bis(2-hydroxyethyl)glycine (BHEG) based interfacial adsorption layers are constructed to stabilize Zn anodes and mitigate polyiodide shuttle according to ion–dipole interactions, by using a strategy of electrolyte additive. The tertiary amine (N(CH<sub>2</sub>)<sub>3</sub>) and carboxyl (─COO<sup>−</sup>) groups in the deprotonated BHEG can reversibly capture H<sup>+</sup> and dynamically neutralize OH<sup>−</sup> ions, efficiently buffering the interfacial pH of Zn metal anodes and suppressing hydrogen evolution reactions. Additionally, the BHEG adsorption layers can repel 39.3% of H<sub>2</sub>O molecules at the Zn interface, creating a “water-deficient” inner Helmholtz plane and preventing Zn corrosion. Significantly, the N(CH<sub>2</sub>)<sub>3</sub> groups in BHEG also inhibit polyiodide shuttle at the I<sub>2</sub> cathode, which exhibits high adsorption energies of −0.88, −0.41, and −0.39 eV for I<sup>−</sup>, I<sub>2,</sub> and I<sub>3</sub><sup>−</sup>, respectively. Attributing to these benefits, the Zn–I<sub>2</sub> battery can achieve a high areal capacity of 2.99 mAh cm<sup>−2</sup> and an extended cycling life of 2,000 cycles, even at a high mass loading of I<sub>2</sub> cathode (≈21.5 mg cm<sup>−2</sup>).","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"94 1","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202420221","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Aqueous zinc–iodine (Zn–I2) batteries are promising candidates for large-scale energy storage due to the merits of low cost and high safety. However, their commercial application is hindered by Zn corrosion and polyiodide shuttle at I2 cathode. Herein, N,N-bis(2-hydroxyethyl)glycine (BHEG) based interfacial adsorption layers are constructed to stabilize Zn anodes and mitigate polyiodide shuttle according to ion–dipole interactions, by using a strategy of electrolyte additive. The tertiary amine (N(CH2)3) and carboxyl (─COO) groups in the deprotonated BHEG can reversibly capture H+ and dynamically neutralize OH ions, efficiently buffering the interfacial pH of Zn metal anodes and suppressing hydrogen evolution reactions. Additionally, the BHEG adsorption layers can repel 39.3% of H2O molecules at the Zn interface, creating a “water-deficient” inner Helmholtz plane and preventing Zn corrosion. Significantly, the N(CH2)3 groups in BHEG also inhibit polyiodide shuttle at the I2 cathode, which exhibits high adsorption energies of −0.88, −0.41, and −0.39 eV for I, I2, and I3, respectively. Attributing to these benefits, the Zn–I2 battery can achieve a high areal capacity of 2.99 mAh cm−2 and an extended cycling life of 2,000 cycles, even at a high mass loading of I2 cathode (≈21.5 mg cm−2).

Abstract Image

基于氨基酸类似物的界面吸附层实现长寿命锌碘水电池的双重稳定
锌碘水电池(Zn-I2)具有成本低、安全性高的优点,是大规模储能的理想选择。然而,其商业应用却受到锌腐蚀和 I2 阴极多碘穿梭的阻碍。在此,我们采用电解质添加剂的策略,构建了基于 N,N-双(2-羟乙基)甘氨酸(BHEG)的界面吸附层,以稳定锌阳极并根据离子-偶极相互作用减缓聚碘穿梭。去质子化 BHEG 中的叔胺(N(CH2)3)和羧基(-COO-)能可逆地捕获 H+,并动态中和 OH- 离子,从而有效缓冲金属锌阳极的界面 pH 值并抑制氢演化反应。此外,BHEG 吸附层还能排斥 Zn 界面上 39.3% 的 H2O 分子,形成一个 "缺水 "的内 Helmholtz 平面,防止 Zn 腐蚀。值得注意的是,BHEG 中的 N(CH2)3 基团还能抑制多碘化物在 I2 阴极的穿梭,I-、I2 和 I3- 的吸附能分别为 -0.88、-0.41 和 -0.39eV。由于这些优点,即使在 I2 阴极的质量负荷很高(≈21.5 毫克厘米-2)的情况下,Zn-I2 电池也能达到 2.99 毫安时厘米-2 的高单体容量和 2,000 次的循环寿命。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信