Implanted Magnetoelectric Bionic Cartilage Hydrogel

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jiachen Liang, Xinyue Huang, Kaiqi Qin, Hui Wei, Jiaxin Yang, Bin Liu, Zengjie Fan
{"title":"Implanted Magnetoelectric Bionic Cartilage Hydrogel","authors":"Jiachen Liang, Xinyue Huang, Kaiqi Qin, Hui Wei, Jiaxin Yang, Bin Liu, Zengjie Fan","doi":"10.1002/adma.202415417","DOIUrl":null,"url":null,"abstract":"Enhancing defective cartilage repair by creating a bionic cartilage hydrogel supplemented with in situ electromagnetic stimulation, replicating endogenous electromagnetic effects, remains challenging. To achieve this, a unique three-phase solvent system is designed to prepare a magnetoelectric bionic cartilage hydrogel incorporating piezoelectric poly(3-hydroxybutyric acid-3-hydroxyvaleric acid) (PHBV) and magnetostrictive triiron tetraoxide nanoparticles (Fe<sub>3</sub>O<sub>4</sub> NPs) into sodium alginate (SA) hydrogel to form a dual-network, semi-crosslinked chain entanglement structure. The synthesized hydrogel features similar composition, structure, and mechanical properties to natural cartilage. In addition, after the implantation of cartilage, the motion-driven magnetoelectric-coupled cyclic transformation model is triggered by gentle joint forces, initiating a piezoelectric response that leads to magnetoelectric-coupled cyclic transformation. The freely excitable and cyclically enhanced electromagnetic stimulation it can provide, by simulating and amplifying endogenous electromagnetic effects, obtains induced defective cartilage repair efficacy superior to piezoelectric or magnetic stimulation alone.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"13 1","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202415417","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Enhancing defective cartilage repair by creating a bionic cartilage hydrogel supplemented with in situ electromagnetic stimulation, replicating endogenous electromagnetic effects, remains challenging. To achieve this, a unique three-phase solvent system is designed to prepare a magnetoelectric bionic cartilage hydrogel incorporating piezoelectric poly(3-hydroxybutyric acid-3-hydroxyvaleric acid) (PHBV) and magnetostrictive triiron tetraoxide nanoparticles (Fe3O4 NPs) into sodium alginate (SA) hydrogel to form a dual-network, semi-crosslinked chain entanglement structure. The synthesized hydrogel features similar composition, structure, and mechanical properties to natural cartilage. In addition, after the implantation of cartilage, the motion-driven magnetoelectric-coupled cyclic transformation model is triggered by gentle joint forces, initiating a piezoelectric response that leads to magnetoelectric-coupled cyclic transformation. The freely excitable and cyclically enhanced electromagnetic stimulation it can provide, by simulating and amplifying endogenous electromagnetic effects, obtains induced defective cartilage repair efficacy superior to piezoelectric or magnetic stimulation alone.

Abstract Image

植入磁电仿生软骨水凝胶
通过制造一种仿生软骨水凝胶来增强缺陷软骨的修复,并辅以原位电磁刺激,复制内源性电磁效应,仍然具有挑战性。为了实现这一目标,设计了一种独特的三相溶剂体系,将压电聚(3-羟基丁酸-3-羟基戊酸)(PHBV)和磁致伸缩四氧化三铁纳米粒子(Fe3O4 NPs)结合到海藻酸钠(SA)水凝胶中,制备出一种磁电仿生软骨水凝胶,形成双网络、半交联链纠缠结构。合成的水凝胶具有与天然软骨相似的组成、结构和力学性能。此外,软骨植入后,关节的温和力触发运动驱动的磁电耦合循环转化模型,产生压电响应,导致磁电耦合循环转化。它所能提供的可自由激发和循环增强的电磁刺激,通过模拟和放大内源性电磁效应,获得优于单独压电或磁刺激的诱导缺损软骨修复效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信