Andrey Sokolov, Jaideep Katuri, Juan J. de Pablo, Alexey Snezhko
{"title":"Synthetic Active Liquid Crystals Powered by Acoustic Waves","authors":"Andrey Sokolov, Jaideep Katuri, Juan J. de Pablo, Alexey Snezhko","doi":"10.1002/adma.202418846","DOIUrl":null,"url":null,"abstract":"Active nematic materials combine orientational order with activity at the microscopic level. Current experimental realizations of active nematics include vibrating elongated particles, cell layers, suspensions of elongated bacteria, and a mixture of bio-filaments with molecular motors. The majority of active nematics are of biological origin. The realization of a fully synthetic active liquid crystal comprised of a lyotropic chromonic liquid crystal energized by ultrasonic waves, is reported. This synthetic active liquid crystal is free from biological degradation and variability, exhibits phenomenology associated with active nematics, and enables precise and rapid activity control over a significantly extended range. It is demonstrated that the energy of the acoustic field is converted into microscopic extensile stresses disrupting long-range nematic order and giving rise to an undulation instability and proliferation of topological defects. The emergence of unconventional free-standing persistent vortices in the nematic director field at high activity levels is revealed. The results provide a foundation for the design of externally energized active liquid crystals with stable material properties and tunable topological defect dynamics crucial for the realization of reconfigurable microfluidic systems.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"29 1","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202418846","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Active nematic materials combine orientational order with activity at the microscopic level. Current experimental realizations of active nematics include vibrating elongated particles, cell layers, suspensions of elongated bacteria, and a mixture of bio-filaments with molecular motors. The majority of active nematics are of biological origin. The realization of a fully synthetic active liquid crystal comprised of a lyotropic chromonic liquid crystal energized by ultrasonic waves, is reported. This synthetic active liquid crystal is free from biological degradation and variability, exhibits phenomenology associated with active nematics, and enables precise and rapid activity control over a significantly extended range. It is demonstrated that the energy of the acoustic field is converted into microscopic extensile stresses disrupting long-range nematic order and giving rise to an undulation instability and proliferation of topological defects. The emergence of unconventional free-standing persistent vortices in the nematic director field at high activity levels is revealed. The results provide a foundation for the design of externally energized active liquid crystals with stable material properties and tunable topological defect dynamics crucial for the realization of reconfigurable microfluidic systems.
期刊介绍:
Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.