Anthony V. Powell, Paz Vaqueiro, Sahil Tippireddy, Jesús Prado-Gonjal
{"title":"Exploiting chemical bonding principles to design high-performance thermoelectric materials","authors":"Anthony V. Powell, Paz Vaqueiro, Sahil Tippireddy, Jesús Prado-Gonjal","doi":"10.1038/s41570-025-00695-6","DOIUrl":null,"url":null,"abstract":"<p>Thermoelectric materials offer unique opportunities to convert otherwise wasted thermal energy into useful electrical energy. Many of the traditional thermoelectric materials, such as bismuth telluride and lead telluride, contain scarce and toxic elements. This has motivated the search for new high-performance materials containing readily-available and environmentally-less-damaging elements. Numerous advances in the development of high-performance thermoelectric materials exploit fundamental chemical-bonding principles. Much of the thermoelectric literature lies at the interface of chemistry, physics and materials science. In this Review, progress in the design of high-performance materials is discussed in terms of ideas that are familiar in chemistry. This includes the influence of concepts such as bonding heterogeneity, covalency, polarizability, lone pairs and different bonding models, including multi-centre, metallic and iono-covalent archetypes. In this way, we seek to present aspects of this diverse field of research in terms that are accessible to the chemistry community.</p><figure></figure>","PeriodicalId":18849,"journal":{"name":"Nature reviews. Chemistry","volume":"61 1","pages":""},"PeriodicalIF":38.1000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature reviews. Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1038/s41570-025-00695-6","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Thermoelectric materials offer unique opportunities to convert otherwise wasted thermal energy into useful electrical energy. Many of the traditional thermoelectric materials, such as bismuth telluride and lead telluride, contain scarce and toxic elements. This has motivated the search for new high-performance materials containing readily-available and environmentally-less-damaging elements. Numerous advances in the development of high-performance thermoelectric materials exploit fundamental chemical-bonding principles. Much of the thermoelectric literature lies at the interface of chemistry, physics and materials science. In this Review, progress in the design of high-performance materials is discussed in terms of ideas that are familiar in chemistry. This includes the influence of concepts such as bonding heterogeneity, covalency, polarizability, lone pairs and different bonding models, including multi-centre, metallic and iono-covalent archetypes. In this way, we seek to present aspects of this diverse field of research in terms that are accessible to the chemistry community.
期刊介绍:
Nature Reviews Chemistry is an online-only journal that publishes Reviews, Perspectives, and Comments on various disciplines within chemistry. The Reviews aim to offer balanced and objective analyses of selected topics, providing clear descriptions of relevant scientific literature. The content is designed to be accessible to recent graduates in any chemistry-related discipline while also offering insights for principal investigators and industry-based research scientists. Additionally, Reviews should provide the authors' perspectives on future directions and opinions regarding the major challenges faced by researchers in the field.