Tianyi Zhu, Shibin Zhao, Bochao Xu, Dongyan Liu, M. Bayani Cardenas, Huaming Yu, Yan Zhang, Xiaogang Chen, Kai Xiao, Lixin Yi, Hyung-Mi Cho, Sumei Liu, Ziliang Zhang, Ergang Lian, William C. Burnett, Guangquan Chen, Zhigang Yu, Isaac R. Santos
{"title":"Large scale submarine groundwater discharge dominates nutrient inputs to China’s coast","authors":"Tianyi Zhu, Shibin Zhao, Bochao Xu, Dongyan Liu, M. Bayani Cardenas, Huaming Yu, Yan Zhang, Xiaogang Chen, Kai Xiao, Lixin Yi, Hyung-Mi Cho, Sumei Liu, Ziliang Zhang, Ergang Lian, William C. Burnett, Guangquan Chen, Zhigang Yu, Isaac R. Santos","doi":"10.1038/s41467-025-58103-y","DOIUrl":null,"url":null,"abstract":"<p>Submarine groundwater discharge (SGD) is a nutrient source to coastal waters. However, most SGD estimates are restricted to a local scale and hardly distinguish contributions from fresh (FSGD) and recirculated (RSGD) SGD. Here, we compiled data on radium/radon of groundwater (<i>n</i> ~ 2000) and seawater (<i>n</i> ~ 10,000) samples along ~18,000 km of China’s coastal seas to resolve large scale FSGD and RSGD and their associated nutrient loads. Nearshore-scale FSGD ( ~ 3.56 × 10<sup>8</sup> m<sup>3</sup> d<sup>−1</sup>) was only 2% of the total SGD but comparable to RSGD in terms of nutrient loads. Despite large uncertainties quantified via Monte Carlo simulations, SGD was a dominant contributor to China’s coastal nutrient budgets, with dissolved inorganic nitrogen, phosphorus and silicate fluxes of ~395, 2.9, and 581 Gmol a<sup>−1</sup>, respectively. Total SGD accounted for 19–54% of nutrient inputs, exceeding inputs from atmospheric deposition and rivers. Overall, SGD helps sustaining primary production along one of the most human-impacted marginal seas on Earth.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"24 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-58103-y","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Submarine groundwater discharge (SGD) is a nutrient source to coastal waters. However, most SGD estimates are restricted to a local scale and hardly distinguish contributions from fresh (FSGD) and recirculated (RSGD) SGD. Here, we compiled data on radium/radon of groundwater (n ~ 2000) and seawater (n ~ 10,000) samples along ~18,000 km of China’s coastal seas to resolve large scale FSGD and RSGD and their associated nutrient loads. Nearshore-scale FSGD ( ~ 3.56 × 108 m3 d−1) was only 2% of the total SGD but comparable to RSGD in terms of nutrient loads. Despite large uncertainties quantified via Monte Carlo simulations, SGD was a dominant contributor to China’s coastal nutrient budgets, with dissolved inorganic nitrogen, phosphorus and silicate fluxes of ~395, 2.9, and 581 Gmol a−1, respectively. Total SGD accounted for 19–54% of nutrient inputs, exceeding inputs from atmospheric deposition and rivers. Overall, SGD helps sustaining primary production along one of the most human-impacted marginal seas on Earth.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.