Unveiling the reversible sodium-ion storage mechanism in rutile TiO2 nanorods

IF 5.5 3区 材料科学 Q1 ELECTROCHEMISTRY
Angélica Duarte-Cárdenas , Liuda Mereacre , Michael Knapp , Pilar Díaz-Carrasco , Flaviano García-Alvarado , Alois Kuhn
{"title":"Unveiling the reversible sodium-ion storage mechanism in rutile TiO2 nanorods","authors":"Angélica Duarte-Cárdenas ,&nbsp;Liuda Mereacre ,&nbsp;Michael Knapp ,&nbsp;Pilar Díaz-Carrasco ,&nbsp;Flaviano García-Alvarado ,&nbsp;Alois Kuhn","doi":"10.1016/j.electacta.2025.146113","DOIUrl":null,"url":null,"abstract":"<div><div>Rutile titanium dioxide (TiO₂) is an abundant, cost-effective material with a one-dimensional ion diffusion pathway along the <em>c</em>-axis. However, its potential as an anode material for Na-ion batteries has been long underestimated due to its low electronic conductivity and restricted ion diffusion across the <em>ab</em>-plane. Despite its promising electrochemical properties, the origin of the electrochemical performances in TiO<sub>2</sub> rutile is still largely unclear. In this work, the Na<sup>+</sup>storage mechanisms of TiO<sub>2</sub>(R) nanorods, 50 nm in length and 5 nm in width, are systematically investigated. The overall charge storage in TiO<sub>2</sub> nanorutile is dominated by a mix of surface pseudo-capacitive and diffusion-control Na<sup>+</sup> intercalation, whose contributions strongly depend on the C-rate employed. Using <em>operando</em> X-ray diffraction, we demonstrate for the first time reversible Na<sup>+</sup> intercalation in the rutile tunnels at low C-rates, favored by the specific nanoarchitecture of TiO<sub>2</sub>. In line with this, sodium diffusion coefficient is several orders of magnitude higher compared with previous reports (10<sup>−16</sup> - 10<sup>−17</sup> cm<sup>2</sup> s<sup>−1</sup> vs. 10<sup>−20</sup> cm<sup>2</sup> s<sup>−1</sup>), ensuring a high reversible capacity of ∼ 210 mAh g<sup>−1</sup> at low 17 mA g<sup>−1</sup> (C/20), and 140 mAh g<sup>−1</sup> at 67 mA g<sup>−1</sup> (C/5) with little capacity fade and improved cycling stability. Whereas high-rate capability of 71 mAh g<sup>−1</sup> at 1.7 A g<sup>−1</sup> is justified by the dominant pseudo-capacitive contribution to the total capacity at high cycling rates. Carbon-enriched TiO<sub>2</sub> (6.5:2.5:1) electrodes exhibit enhanced electrochemical sodium charge storage and kinetics, delivering a higher reversible capacity of 280 mAh g<sup>−1</sup> at 17 mA g<sup>−1</sup> and an improved high-rate capability of 128 mAh g<sup>−1</sup> at 1.7 A g<sup>−1</sup>. These results demonstrate the significant potential of TiO<sub>2</sub> nanorutile for high-rate sodium-ion battery applications.</div></div>","PeriodicalId":305,"journal":{"name":"Electrochimica Acta","volume":"525 ","pages":"Article 146113"},"PeriodicalIF":5.5000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochimica Acta","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S001346862500475X","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

Rutile titanium dioxide (TiO₂) is an abundant, cost-effective material with a one-dimensional ion diffusion pathway along the c-axis. However, its potential as an anode material for Na-ion batteries has been long underestimated due to its low electronic conductivity and restricted ion diffusion across the ab-plane. Despite its promising electrochemical properties, the origin of the electrochemical performances in TiO2 rutile is still largely unclear. In this work, the Na+storage mechanisms of TiO2(R) nanorods, 50 nm in length and 5 nm in width, are systematically investigated. The overall charge storage in TiO2 nanorutile is dominated by a mix of surface pseudo-capacitive and diffusion-control Na+ intercalation, whose contributions strongly depend on the C-rate employed. Using operando X-ray diffraction, we demonstrate for the first time reversible Na+ intercalation in the rutile tunnels at low C-rates, favored by the specific nanoarchitecture of TiO2. In line with this, sodium diffusion coefficient is several orders of magnitude higher compared with previous reports (10−16 - 10−17 cm2 s−1 vs. 10−20 cm2 s−1), ensuring a high reversible capacity of ∼ 210 mAh g−1 at low 17 mA g−1 (C/20), and 140 mAh g−1 at 67 mA g−1 (C/5) with little capacity fade and improved cycling stability. Whereas high-rate capability of 71 mAh g−1 at 1.7 A g−1 is justified by the dominant pseudo-capacitive contribution to the total capacity at high cycling rates. Carbon-enriched TiO2 (6.5:2.5:1) electrodes exhibit enhanced electrochemical sodium charge storage and kinetics, delivering a higher reversible capacity of 280 mAh g−1 at 17 mA g−1 and an improved high-rate capability of 128 mAh g−1 at 1.7 A g−1. These results demonstrate the significant potential of TiO2 nanorutile for high-rate sodium-ion battery applications.

Abstract Image

Abstract Image

金红石型二氧化钛(TiO₂)是一种资源丰富、成本效益高的材料,具有沿 c 轴的一维离子扩散途径。然而,由于其电子电导率较低,离子在ab面上的扩散受到限制,其作为纳离子电池阳极材料的潜力长期以来一直被低估。尽管 TiO2 金红石具有良好的电化学性能,但其电化学性能的来源在很大程度上仍不清楚。本文系统研究了长度为 50 nm、宽度为 5 nm 的 TiO2(R) 纳米棒的 Na+ 储存机制。TiO2 纳米金红石中的整体电荷存储主要由表面伪电容和扩散控制的 Na+ 插层混合作用所主导,其贡献与所采用的 C 速率密切相关。通过操作X射线衍射,我们首次证明了在低C速率下金红石隧道中可逆的Na+插层,而TiO2的特殊纳米结构则有利于Na+插层。与此相应,钠扩散系数比以前的报告高出几个数量级(10-16 -10-17 cm2 s-1 vs. 10-20 cm2 s-1),从而确保了在 17 mA g-1 (C/20)的低速率下具有 210 mAh g-1 的高可逆容量,在 67 mA g-1 (C/5)的速率下具有 140 mAh g-1 的高可逆容量,并且容量衰减很小,循环稳定性更好。而 1.7 A g-1 时的 71 mAh g-1 的高倍率容量则是由于在高循环速率下,伪电容对总容量的贡献占主导地位。富碳 TiO2(6.5:2.5:1)电极显示出更强的电化学钠电荷存储能力和动力学性能,在 17 mA g-1 电流条件下可提供 280 mAh g-1 的更高可逆容量,在 1.7 A g-1 电流条件下可提供 128 mAh g-1 的更高倍率容量。这些结果证明了 TiO2 纳米钌在高倍率钠离子电池应用中的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Electrochimica Acta
Electrochimica Acta 工程技术-电化学
CiteScore
11.30
自引率
6.10%
发文量
1634
审稿时长
41 days
期刊介绍: Electrochimica Acta is an international journal. It is intended for the publication of both original work and reviews in the field of electrochemistry. Electrochemistry should be interpreted to mean any of the research fields covered by the Divisions of the International Society of Electrochemistry listed below, as well as emerging scientific domains covered by ISE New Topics Committee.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信