The dynamic and diverse nature of parenchyma cells in the Arabidopsis root during secondary growth

IF 15.8 1区 生物学 Q1 PLANT SCIENCES
Munan Lyu, Hiroyuki Iida, Thomas Eekhout, Meeri Mäkelä, Sampo Muranen, Lingling Ye, Anne Vatén, Brecht Wybouw, Xin Wang, Bert De Rybel, Ari Pekka Mähönen
{"title":"The dynamic and diverse nature of parenchyma cells in the Arabidopsis root during secondary growth","authors":"Munan Lyu, Hiroyuki Iida, Thomas Eekhout, Meeri Mäkelä, Sampo Muranen, Lingling Ye, Anne Vatén, Brecht Wybouw, Xin Wang, Bert De Rybel, Ari Pekka Mähönen","doi":"10.1038/s41477-025-01938-6","DOIUrl":null,"url":null,"abstract":"<p>During secondary growth, the vascular cambium produces conductive xylem and phloem cells, while the phellogen (cork cambium) deposits phellem (cork) as the outermost protective barrier. Although most of the secondary tissues are made up of parenchyma cells, which are also produced by both cambia, their diversity and function are poorly understood. Here we combined single-cell RNA sequencing analysis with lineage tracing to recreate developmental trajectories of the cell types in the <i>Arabidopsis</i> root undergoing secondary growth. By analysing 93 reporter lines, we were able to identify 20 different cell types or cell states, many of which have not been described before. We additionally observed distinct transcriptome signatures of parenchyma cells depending on their maturation state and proximity to the conductive cell types. Our data show that both xylem and phloem parenchyma tissues are required for normal formation of conductive tissue cell types. Furthermore, we show that mature phloem parenchyma gradually obtains periderm identity, and this transformation can be accelerated by jasmonate treatment or wounding. Our study thus reveals the diversity of parenchyma cells and their capacity to undergo considerable identity changes during secondary growth.</p>","PeriodicalId":18904,"journal":{"name":"Nature Plants","volume":"99 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Plants","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41477-025-01938-6","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

During secondary growth, the vascular cambium produces conductive xylem and phloem cells, while the phellogen (cork cambium) deposits phellem (cork) as the outermost protective barrier. Although most of the secondary tissues are made up of parenchyma cells, which are also produced by both cambia, their diversity and function are poorly understood. Here we combined single-cell RNA sequencing analysis with lineage tracing to recreate developmental trajectories of the cell types in the Arabidopsis root undergoing secondary growth. By analysing 93 reporter lines, we were able to identify 20 different cell types or cell states, many of which have not been described before. We additionally observed distinct transcriptome signatures of parenchyma cells depending on their maturation state and proximity to the conductive cell types. Our data show that both xylem and phloem parenchyma tissues are required for normal formation of conductive tissue cell types. Furthermore, we show that mature phloem parenchyma gradually obtains periderm identity, and this transformation can be accelerated by jasmonate treatment or wounding. Our study thus reveals the diversity of parenchyma cells and their capacity to undergo considerable identity changes during secondary growth.

Abstract Image

次生生长过程中拟南芥根系薄壁细胞的动态和多样性
在次生生长过程中,维管形成层产生导电木质部和韧皮部细胞,而木栓形成层(软木)沉积木栓(软木)作为最外层的保护屏障。虽然大多数次生组织是由薄壁细胞组成的,但它们的多样性和功能尚不清楚。在这里,我们将单细胞RNA测序分析与谱系追踪相结合,重现了拟南芥根系次生生长中细胞类型的发育轨迹。通过分析93个报告系,我们能够鉴定出20种不同的细胞类型或细胞状态,其中许多以前没有被描述过。我们还观察到薄壁细胞的不同转录组特征,这取决于它们的成熟状态和与传导细胞类型的接近程度。我们的数据表明木质部和韧皮部薄壁组织都是导电组织细胞类型正常形成所必需的。此外,我们发现成熟的韧皮部薄壁逐渐获得周皮的同一性,茉莉酸处理或伤害可以加速这种转变。因此,我们的研究揭示了薄壁细胞的多样性及其在次生生长过程中经历相当大的身份变化的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Plants
Nature Plants PLANT SCIENCES-
CiteScore
25.30
自引率
2.20%
发文量
196
期刊介绍: Nature Plants is an online-only, monthly journal publishing the best research on plants — from their evolution, development, metabolism and environmental interactions to their societal significance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信