{"title":"Constraining the hidden-charm pentaquark predictions and discriminating the Pc(4440) and Pc(4457) spins through the effective range expansion","authors":"Fang-Zheng Peng, Li-Sheng Geng, Ju-Jun Xie","doi":"10.1103/physrevd.111.054029","DOIUrl":null,"url":null,"abstract":"The Weinberg compositeness criterion dictates that a pure shallow bound state is characterized by a large scattering length a</a:mi>0</a:mn></a:msub>≫</a:mo>O</a:mi>(</a:mo>1</a:mn>/</a:mo>β</a:mi>)</a:mo></a:math> and a positive effective range <f:math xmlns:f=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><f:msub><f:mi>r</f:mi><f:mn>0</f:mn></f:msub></f:math> that naturally scales to the size of <h:math xmlns:h=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><h:mi mathvariant=\"script\">O</h:mi><h:mo stretchy=\"false\">(</h:mo><h:mn>1</h:mn><h:mo>/</h:mo><h:mi>β</h:mi><h:mo stretchy=\"false\">)</h:mo></h:math>, where <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><m:mn>1</m:mn><m:mo>/</m:mo><m:mi>β</m:mi></m:math> signifies the interaction range. In constructing the contact-range effective field theory (EFT) up to the next-to-leading order to describe the pentaquarks <o:math xmlns:o=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><o:msub><o:mi>P</o:mi><o:mi>c</o:mi></o:msub><o:mo stretchy=\"false\">(</o:mo><o:mn>4312</o:mn><o:mo stretchy=\"false\">)</o:mo></o:math>, <s:math xmlns:s=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><s:msub><s:mi>P</s:mi><s:mi>c</s:mi></s:msub><s:mo stretchy=\"false\">(</s:mo><s:mn>4440</s:mn><s:mo stretchy=\"false\">)</s:mo></s:math>, and <w:math xmlns:w=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><w:msub><w:mi>P</w:mi><w:mi>c</w:mi></w:msub><w:mo stretchy=\"false\">(</w:mo><w:mn>4457</w:mn><w:mo stretchy=\"false\">)</w:mo></w:math> observed by the LHCb collaboration in 2019, we match the effective range r</ab:mi>0</ab:mn></ab:msub></ab:math> at single-channel situation for these pentaquarks with the low-energy couplings within the EFT framework. Three different schemes are used to connect the couplings with the effective range. We find positive effective ranges <cb:math xmlns:cb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><cb:msub><cb:mi>r</cb:mi><cb:mn>0</cb:mn></cb:msub></cb:math> of the natural size of <eb:math xmlns:eb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><eb:mi mathvariant=\"script\">O</eb:mi><eb:mo stretchy=\"false\">(</eb:mo><eb:mn>1</eb:mn><eb:mo>/</eb:mo><eb:mi>β</eb:mi><eb:mo stretchy=\"false\">)</eb:mo></eb:math> for the spin configurations <jb:math xmlns:jb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><jb:msup><jb:mi>J</jb:mi><jb:mi>P</jb:mi></jb:msup><jb:mo>=</jb:mo><jb:msup><jb:mfrac><jb:mn>3</jb:mn><jb:mn>2</jb:mn></jb:mfrac><jb:mo>−</jb:mo></jb:msup></jb:math> for <lb:math xmlns:lb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><lb:msub><lb:mi>P</lb:mi><lb:mi>c</lb:mi></lb:msub><lb:mo stretchy=\"false\">(</lb:mo><lb:mn>4440</lb:mn><lb:mo stretchy=\"false\">)</lb:mo></lb:math> and <pb:math xmlns:pb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><pb:msup><pb:mi>J</pb:mi><pb:mi>P</pb:mi></pb:msup><pb:mo>=</pb:mo><pb:msup><pb:mfrac><pb:mn>1</pb:mn><pb:mn>2</pb:mn></pb:mfrac><pb:mo>−</pb:mo></pb:msup></pb:math> for <rb:math xmlns:rb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><rb:msub><rb:mi>P</rb:mi><rb:mi>c</rb:mi></rb:msub><rb:mo stretchy=\"false\">(</rb:mo><rb:mn>4457</rb:mn><rb:mo stretchy=\"false\">)</rb:mo></rb:math> within the molecular <vb:math xmlns:vb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><vb:msup><vb:mover accent=\"true\"><vb:mi>D</vb:mi><vb:mo stretchy=\"false\">¯</vb:mo></vb:mover><vb:mo>*</vb:mo></vb:msup><vb:msub><vb:mi mathvariant=\"normal\">Σ</vb:mi><vb:mi>c</vb:mi></vb:msub></vb:math> description. Additionally, predictions from the power counting for low-energy couplings or Wilsonian coefficients suggest that, under heavy quark spin symmetry, the broad P</ac:mi>c</ac:mi></ac:msub>(</ac:mo>4380</ac:mn>)</ac:mo></ac:math> resonance, discovered by the LHCb collaboration in 2015, when considered as part of the single-channel <ec:math xmlns:ec=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><ec:msup><ec:mover accent=\"true\"><ec:mi>D</ec:mi><ec:mo stretchy=\"false\">¯</ec:mo></ec:mover><ec:mrow><ec:mo stretchy=\"false\">(</ec:mo><ec:mo>*</ec:mo><ec:mo stretchy=\"false\">)</ec:mo></ec:mrow></ec:msup><ec:msubsup><ec:mi mathvariant=\"normal\">Σ</ec:mi><ec:mi>c</ec:mi><ec:mrow><ec:mo stretchy=\"false\">(</ec:mo><ec:mo>*</ec:mo><ec:mo stretchy=\"false\">)</ec:mo></ec:mrow></ec:msubsup></ec:math> molecular system alongside <nc:math xmlns:nc=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><nc:msub><nc:mi>P</nc:mi><nc:mi>c</nc:mi></nc:msub><nc:mo stretchy=\"false\">(</nc:mo><nc:mn>4312</nc:mn><nc:mo stretchy=\"false\">)</nc:mo></nc:math>, <rc:math xmlns:rc=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><rc:msub><rc:mi>P</rc:mi><rc:mi>c</rc:mi></rc:msub><rc:mo stretchy=\"false\">(</rc:mo><rc:mn>4440</rc:mn><rc:mo stretchy=\"false\">)</rc:mo></rc:math>, and <vc:math xmlns:vc=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><vc:msub><vc:mi>P</vc:mi><vc:mi>c</vc:mi></vc:msub><vc:mo stretchy=\"false\">(</vc:mo><vc:mn>4457</vc:mn><vc:mo stretchy=\"false\">)</vc:mo></vc:math>, has a mass of approximately <zc:math xmlns:zc=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><zc:mrow><zc:mn>4376</zc:mn><zc:mtext> </zc:mtext><zc:mtext> </zc:mtext><zc:mi>MeV</zc:mi></zc:mrow></zc:math>. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"1 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.111.054029","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
The Weinberg compositeness criterion dictates that a pure shallow bound state is characterized by a large scattering length a0≫O(1/β) and a positive effective range r0 that naturally scales to the size of O(1/β), where 1/β signifies the interaction range. In constructing the contact-range effective field theory (EFT) up to the next-to-leading order to describe the pentaquarks Pc(4312), Pc(4440), and Pc(4457) observed by the LHCb collaboration in 2019, we match the effective range r0 at single-channel situation for these pentaquarks with the low-energy couplings within the EFT framework. Three different schemes are used to connect the couplings with the effective range. We find positive effective ranges r0 of the natural size of O(1/β) for the spin configurations JP=32− for Pc(4440) and JP=12− for Pc(4457) within the molecular D¯*Σc description. Additionally, predictions from the power counting for low-energy couplings or Wilsonian coefficients suggest that, under heavy quark spin symmetry, the broad Pc(4380) resonance, discovered by the LHCb collaboration in 2015, when considered as part of the single-channel D¯(*)Σc(*) molecular system alongside Pc(4312), Pc(4440), and Pc(4457), has a mass of approximately 4376MeV. Published by the American Physical Society2025
期刊介绍:
Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics.
PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including:
Particle physics experiments,
Electroweak interactions,
Strong interactions,
Lattice field theories, lattice QCD,
Beyond the standard model physics,
Phenomenological aspects of field theory, general methods,
Gravity, cosmology, cosmic rays,
Astrophysics and astroparticle physics,
General relativity,
Formal aspects of field theory, field theory in curved space,
String theory, quantum gravity, gauge/gravity duality.