Constraining the hidden-charm pentaquark predictions and discriminating the Pc(4440) and Pc(4457) spins through the effective range expansion

IF 5 2区 物理与天体物理 Q1 Physics and Astronomy
Fang-Zheng Peng, Li-Sheng Geng, Ju-Jun Xie
{"title":"Constraining the hidden-charm pentaquark predictions and discriminating the Pc(4440) and Pc(4457) spins through the effective range expansion","authors":"Fang-Zheng Peng, Li-Sheng Geng, Ju-Jun Xie","doi":"10.1103/physrevd.111.054029","DOIUrl":null,"url":null,"abstract":"The Weinberg compositeness criterion dictates that a pure shallow bound state is characterized by a large scattering length a</a:mi>0</a:mn></a:msub>≫</a:mo>O</a:mi>(</a:mo>1</a:mn>/</a:mo>β</a:mi>)</a:mo></a:math> and a positive effective range <f:math xmlns:f=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><f:msub><f:mi>r</f:mi><f:mn>0</f:mn></f:msub></f:math> that naturally scales to the size of <h:math xmlns:h=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><h:mi mathvariant=\"script\">O</h:mi><h:mo stretchy=\"false\">(</h:mo><h:mn>1</h:mn><h:mo>/</h:mo><h:mi>β</h:mi><h:mo stretchy=\"false\">)</h:mo></h:math>, where <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><m:mn>1</m:mn><m:mo>/</m:mo><m:mi>β</m:mi></m:math> signifies the interaction range. In constructing the contact-range effective field theory (EFT) up to the next-to-leading order to describe the pentaquarks <o:math xmlns:o=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><o:msub><o:mi>P</o:mi><o:mi>c</o:mi></o:msub><o:mo stretchy=\"false\">(</o:mo><o:mn>4312</o:mn><o:mo stretchy=\"false\">)</o:mo></o:math>, <s:math xmlns:s=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><s:msub><s:mi>P</s:mi><s:mi>c</s:mi></s:msub><s:mo stretchy=\"false\">(</s:mo><s:mn>4440</s:mn><s:mo stretchy=\"false\">)</s:mo></s:math>, and <w:math xmlns:w=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><w:msub><w:mi>P</w:mi><w:mi>c</w:mi></w:msub><w:mo stretchy=\"false\">(</w:mo><w:mn>4457</w:mn><w:mo stretchy=\"false\">)</w:mo></w:math> observed by the LHCb collaboration in 2019, we match the effective range r</ab:mi>0</ab:mn></ab:msub></ab:math> at single-channel situation for these pentaquarks with the low-energy couplings within the EFT framework. Three different schemes are used to connect the couplings with the effective range. We find positive effective ranges <cb:math xmlns:cb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><cb:msub><cb:mi>r</cb:mi><cb:mn>0</cb:mn></cb:msub></cb:math> of the natural size of <eb:math xmlns:eb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><eb:mi mathvariant=\"script\">O</eb:mi><eb:mo stretchy=\"false\">(</eb:mo><eb:mn>1</eb:mn><eb:mo>/</eb:mo><eb:mi>β</eb:mi><eb:mo stretchy=\"false\">)</eb:mo></eb:math> for the spin configurations <jb:math xmlns:jb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><jb:msup><jb:mi>J</jb:mi><jb:mi>P</jb:mi></jb:msup><jb:mo>=</jb:mo><jb:msup><jb:mfrac><jb:mn>3</jb:mn><jb:mn>2</jb:mn></jb:mfrac><jb:mo>−</jb:mo></jb:msup></jb:math> for <lb:math xmlns:lb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><lb:msub><lb:mi>P</lb:mi><lb:mi>c</lb:mi></lb:msub><lb:mo stretchy=\"false\">(</lb:mo><lb:mn>4440</lb:mn><lb:mo stretchy=\"false\">)</lb:mo></lb:math> and <pb:math xmlns:pb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><pb:msup><pb:mi>J</pb:mi><pb:mi>P</pb:mi></pb:msup><pb:mo>=</pb:mo><pb:msup><pb:mfrac><pb:mn>1</pb:mn><pb:mn>2</pb:mn></pb:mfrac><pb:mo>−</pb:mo></pb:msup></pb:math> for <rb:math xmlns:rb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><rb:msub><rb:mi>P</rb:mi><rb:mi>c</rb:mi></rb:msub><rb:mo stretchy=\"false\">(</rb:mo><rb:mn>4457</rb:mn><rb:mo stretchy=\"false\">)</rb:mo></rb:math> within the molecular <vb:math xmlns:vb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><vb:msup><vb:mover accent=\"true\"><vb:mi>D</vb:mi><vb:mo stretchy=\"false\">¯</vb:mo></vb:mover><vb:mo>*</vb:mo></vb:msup><vb:msub><vb:mi mathvariant=\"normal\">Σ</vb:mi><vb:mi>c</vb:mi></vb:msub></vb:math> description. Additionally, predictions from the power counting for low-energy couplings or Wilsonian coefficients suggest that, under heavy quark spin symmetry, the broad P</ac:mi>c</ac:mi></ac:msub>(</ac:mo>4380</ac:mn>)</ac:mo></ac:math> resonance, discovered by the LHCb collaboration in 2015, when considered as part of the single-channel <ec:math xmlns:ec=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><ec:msup><ec:mover accent=\"true\"><ec:mi>D</ec:mi><ec:mo stretchy=\"false\">¯</ec:mo></ec:mover><ec:mrow><ec:mo stretchy=\"false\">(</ec:mo><ec:mo>*</ec:mo><ec:mo stretchy=\"false\">)</ec:mo></ec:mrow></ec:msup><ec:msubsup><ec:mi mathvariant=\"normal\">Σ</ec:mi><ec:mi>c</ec:mi><ec:mrow><ec:mo stretchy=\"false\">(</ec:mo><ec:mo>*</ec:mo><ec:mo stretchy=\"false\">)</ec:mo></ec:mrow></ec:msubsup></ec:math> molecular system alongside <nc:math xmlns:nc=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><nc:msub><nc:mi>P</nc:mi><nc:mi>c</nc:mi></nc:msub><nc:mo stretchy=\"false\">(</nc:mo><nc:mn>4312</nc:mn><nc:mo stretchy=\"false\">)</nc:mo></nc:math>, <rc:math xmlns:rc=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><rc:msub><rc:mi>P</rc:mi><rc:mi>c</rc:mi></rc:msub><rc:mo stretchy=\"false\">(</rc:mo><rc:mn>4440</rc:mn><rc:mo stretchy=\"false\">)</rc:mo></rc:math>, and <vc:math xmlns:vc=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><vc:msub><vc:mi>P</vc:mi><vc:mi>c</vc:mi></vc:msub><vc:mo stretchy=\"false\">(</vc:mo><vc:mn>4457</vc:mn><vc:mo stretchy=\"false\">)</vc:mo></vc:math>, has a mass of approximately <zc:math xmlns:zc=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><zc:mrow><zc:mn>4376</zc:mn><zc:mtext> </zc:mtext><zc:mtext> </zc:mtext><zc:mi>MeV</zc:mi></zc:mrow></zc:math>. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"1 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.111.054029","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

The Weinberg compositeness criterion dictates that a pure shallow bound state is characterized by a large scattering length a0≫O(1/β) and a positive effective range r0 that naturally scales to the size of O(1/β), where 1/β signifies the interaction range. In constructing the contact-range effective field theory (EFT) up to the next-to-leading order to describe the pentaquarks Pc(4312), Pc(4440), and Pc(4457) observed by the LHCb collaboration in 2019, we match the effective range r0 at single-channel situation for these pentaquarks with the low-energy couplings within the EFT framework. Three different schemes are used to connect the couplings with the effective range. We find positive effective ranges r0 of the natural size of O(1/β) for the spin configurations JP=32 for Pc(4440) and JP=12 for Pc(4457) within the molecular D¯*Σc description. Additionally, predictions from the power counting for low-energy couplings or Wilsonian coefficients suggest that, under heavy quark spin symmetry, the broad Pc(4380) resonance, discovered by the LHCb collaboration in 2015, when considered as part of the single-channel D¯(*)Σc(*) molecular system alongside Pc(4312), Pc(4440), and Pc(4457), has a mass of approximately 4376 MeV. Published by the American Physical Society 2025
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Review D
Physical Review D 物理-天文与天体物理
CiteScore
9.20
自引率
36.00%
发文量
0
审稿时长
2 months
期刊介绍: Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics. PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including: Particle physics experiments, Electroweak interactions, Strong interactions, Lattice field theories, lattice QCD, Beyond the standard model physics, Phenomenological aspects of field theory, general methods, Gravity, cosmology, cosmic rays, Astrophysics and astroparticle physics, General relativity, Formal aspects of field theory, field theory in curved space, String theory, quantum gravity, gauge/gravity duality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信