Synthetic Reversible Fibrous Network Hydrogels Based on a Double‐Helical Polyelectrolyte

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Haonan Zheng, Kaizheng Liu, Yongheng Cui, Legeng Li, Qinbo Liu, Yongjun Men
{"title":"Synthetic Reversible Fibrous Network Hydrogels Based on a Double‐Helical Polyelectrolyte","authors":"Haonan Zheng, Kaizheng Liu, Yongheng Cui, Legeng Li, Qinbo Liu, Yongjun Men","doi":"10.1002/anie.202503030","DOIUrl":null,"url":null,"abstract":"The unique mechanical properties of fibrous networks in biological tissues have inspired the development of synthetic fibrous network hydrogels, yet few polymers can reversibly form such structures. Here, we report the first reversible fibrous network hydrogel composed of synthetic polyelectrolytes with extremely rigid conformation (persistence length is ~1 μm), made up of double‐helical poly(2,2'‐disulfonyl‐4,4'‐benzidine terephthalamide) (PBDT) and tetrabutylphosphonium bromide ([P4444]Br). The hydrogel exhibits a unique sol‐gel transition, triggered by the hydrophobicity increase of [P4444]Br above lower critical solution temperature (LCST). This drives PBDT aggregation into fibrous bundles through electrostatic interactions. These bundles grow and branch into a continuous network, with the molecular rigidity of PBDT’s double‐helix conformation being key to gel formation. The hydrogel displays strain‐stiffening mechanical responses akin to biological systems and shows a significant hysteresis (21 °C) between heating and cooling cycles. Uniquely, the effects of salts on the transition temperature deviate from the Hofmeister series, highlighting coordination with sulfonate groups as the dominant factor. Leveraging its modulus change during gelation, the hydrogel was successfully applied as a spray coating on superhydrophobic vertical Teflon surfaces. This study broadens the scope of thermoreversible hydrogels introducing gelation mechanisms for rigid polyelectrolytes and demonstrates their potential in advanced coatings.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"12 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202503030","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The unique mechanical properties of fibrous networks in biological tissues have inspired the development of synthetic fibrous network hydrogels, yet few polymers can reversibly form such structures. Here, we report the first reversible fibrous network hydrogel composed of synthetic polyelectrolytes with extremely rigid conformation (persistence length is ~1 μm), made up of double‐helical poly(2,2'‐disulfonyl‐4,4'‐benzidine terephthalamide) (PBDT) and tetrabutylphosphonium bromide ([P4444]Br). The hydrogel exhibits a unique sol‐gel transition, triggered by the hydrophobicity increase of [P4444]Br above lower critical solution temperature (LCST). This drives PBDT aggregation into fibrous bundles through electrostatic interactions. These bundles grow and branch into a continuous network, with the molecular rigidity of PBDT’s double‐helix conformation being key to gel formation. The hydrogel displays strain‐stiffening mechanical responses akin to biological systems and shows a significant hysteresis (21 °C) between heating and cooling cycles. Uniquely, the effects of salts on the transition temperature deviate from the Hofmeister series, highlighting coordination with sulfonate groups as the dominant factor. Leveraging its modulus change during gelation, the hydrogel was successfully applied as a spray coating on superhydrophobic vertical Teflon surfaces. This study broadens the scope of thermoreversible hydrogels introducing gelation mechanisms for rigid polyelectrolytes and demonstrates their potential in advanced coatings.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信