Artificial intelligence and the diagnosis of oral cavity cancer and oral potentially malignant disorders from clinical photographs: a narrative review.
Payam Mirfendereski, Grace Y Li, Alexander T Pearson, Alexander Ross Kerr
{"title":"Artificial intelligence and the diagnosis of oral cavity cancer and oral potentially malignant disorders from clinical photographs: a narrative review.","authors":"Payam Mirfendereski, Grace Y Li, Alexander T Pearson, Alexander Ross Kerr","doi":"10.3389/froh.2025.1569567","DOIUrl":null,"url":null,"abstract":"<p><p>Oral cavity cancer is associated with high morbidity and mortality, particularly with advanced stage diagnosis. Oral cavity cancer, typically squamous cell carcinoma (OSCC), is often preceded by oral potentially malignant disorders (OPMDs), which comprise eleven disorders with variable risks for malignant transformation. While OPMDs are clinical diagnoses, conventional oral exam followed by biopsy and histopathological analysis is the gold standard for diagnosis of OSCC. There is vast heterogeneity in the clinical presentation of OPMDs, with possible visual similarities to early-stage OSCC or even to various benign oral mucosal abnormalities. The diagnostic challenge of OSCC/OPMDs is compounded in the non-specialist or primary care setting. There has been significant research interest in technology to assist in the diagnosis of OSCC/OPMDs. Artificial intelligence (AI), which enables machine performance of human tasks, has already shown promise in several domains of medical diagnostics. Computer vision, the field of AI dedicated to the analysis of visual data, has over the past decade been applied to clinical photographs for the diagnosis of OSCC/OPMDs. Various methodological concerns and limitations may be encountered in the literature on OSCC/OPMD image analysis. This narrative review delineates the current landscape of AI clinical photograph analysis in the diagnosis of OSCC/OPMDs and navigates the limitations, methodological issues, and clinical workflow implications of this field, providing context for future research considerations.</p>","PeriodicalId":94016,"journal":{"name":"Frontiers in oral health","volume":"6 ","pages":"1569567"},"PeriodicalIF":3.0000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11931071/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in oral health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/froh.2025.1569567","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
Oral cavity cancer is associated with high morbidity and mortality, particularly with advanced stage diagnosis. Oral cavity cancer, typically squamous cell carcinoma (OSCC), is often preceded by oral potentially malignant disorders (OPMDs), which comprise eleven disorders with variable risks for malignant transformation. While OPMDs are clinical diagnoses, conventional oral exam followed by biopsy and histopathological analysis is the gold standard for diagnosis of OSCC. There is vast heterogeneity in the clinical presentation of OPMDs, with possible visual similarities to early-stage OSCC or even to various benign oral mucosal abnormalities. The diagnostic challenge of OSCC/OPMDs is compounded in the non-specialist or primary care setting. There has been significant research interest in technology to assist in the diagnosis of OSCC/OPMDs. Artificial intelligence (AI), which enables machine performance of human tasks, has already shown promise in several domains of medical diagnostics. Computer vision, the field of AI dedicated to the analysis of visual data, has over the past decade been applied to clinical photographs for the diagnosis of OSCC/OPMDs. Various methodological concerns and limitations may be encountered in the literature on OSCC/OPMD image analysis. This narrative review delineates the current landscape of AI clinical photograph analysis in the diagnosis of OSCC/OPMDs and navigates the limitations, methodological issues, and clinical workflow implications of this field, providing context for future research considerations.