Supervised autoencoder denoiser for non-stationarity in multi-session EEG-based BCI.

Avin Ofer, Almagor Ophir, Noah Yoav, Rosipal Roman, Shriki Oren
{"title":"Supervised autoencoder denoiser for non-stationarity in multi-session EEG-based BCI.","authors":"Avin Ofer, Almagor Ophir, Noah Yoav, Rosipal Roman, Shriki Oren","doi":"10.1088/1741-2552/adc48e","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective.</i>Non-stationarity in electroencephalogram (EEG) signals poses significant challenges for the performance and implementation of brain-computer interfaces (BCIs).<i>Approach.</i>In this study, we propose a novel method for cross-session BCI tasks that employs a supervised autoencoder to reduce session-specific information while preserving task-related signals. Our approach compresses high-dimensional EEG inputs and reconstructs them, thereby mitigating non-stationary variability in the data. In addition to unsupervised minimization of the reconstruction error, the objective function of the network includes two supervised terms to ensure that the latent representations exclude session identity information and are optimized for subsequent classification.<i>Main results.</i>Evaluation across three different motor imagery datasets demonstrates that our approach effectively addresses domain adaptation challenges, outperforming both naïve cross-session and within-session methods.<i>Significance.</i>Our method eliminates the need for data from new sessions, making it fully unsupervised concerning new session data and reducing the necessity for recalibration with each session. Furthermore, the reduction of session-specific information in the reconstructed signals indicates that our approach effectively denoises non-stationary signals, thereby enhancing the accuracy of BCI models. Future applications could extend this model to a broader range of BCI tasks and explore the residual signals to investigate sources of non-stationary brain components and other cognitive processes.</p>","PeriodicalId":94096,"journal":{"name":"Journal of neural engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neural engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1741-2552/adc48e","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Objective.Non-stationarity in electroencephalogram (EEG) signals poses significant challenges for the performance and implementation of brain-computer interfaces (BCIs).Approach.In this study, we propose a novel method for cross-session BCI tasks that employs a supervised autoencoder to reduce session-specific information while preserving task-related signals. Our approach compresses high-dimensional EEG inputs and reconstructs them, thereby mitigating non-stationary variability in the data. In addition to unsupervised minimization of the reconstruction error, the objective function of the network includes two supervised terms to ensure that the latent representations exclude session identity information and are optimized for subsequent classification.Main results.Evaluation across three different motor imagery datasets demonstrates that our approach effectively addresses domain adaptation challenges, outperforming both naïve cross-session and within-session methods.Significance.Our method eliminates the need for data from new sessions, making it fully unsupervised concerning new session data and reducing the necessity for recalibration with each session. Furthermore, the reduction of session-specific information in the reconstructed signals indicates that our approach effectively denoises non-stationary signals, thereby enhancing the accuracy of BCI models. Future applications could extend this model to a broader range of BCI tasks and explore the residual signals to investigate sources of non-stationary brain components and other cognitive processes.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信